CAREER: Determinantal, hyperbolic, and log-concave polynomials in theory and applications

职业:行列式、双曲式和对数凹多项式的理论和应用

基本信息

  • 批准号:
    1943363
  • 负责人:
  • 金额:
    $ 41.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2021-11-30
  • 项目状态:
    已结题

项目摘要

Determinants and polynomials are fundamental objects used regularly by researchers across the mathematical sciences. The aim of this project is to better understand some classes of polynomials that, like determinants, are ubiquitous in mathematics. Hyperbolic polynomials and, even more generally, log-concave polynomials are real polynomials that share many useful functional properties of determinants. The study of hyperbolic polynomials originated in the context of partial differential equations in the 1950's and has been used to understand problems in convex optimization, operator theory, and combinatorics. There are still many important open questions about such polynomials, and because of their prevalence and concrete nature, structural results often have far-ranging applications. The educational component of this project includes a series of summer workshops for undergraduate and graduate students providing them a background in an important and active area of mathematical research as well as exposure to its applications in other fields. Recently, close connections between log-concave polynomials and matroids, which are combinatorial models of independence structures, were developed. Coefficients of these polynomials give discrete probability distributions that can be efficiently sampled. This research aims to use real algebraic and discrete geometry to further develop our understanding of these classes of polynomials, with a view towards applications in approximation algorithms, combinatorics, convex optimization, and operator theory. This award will also support workshops for undergraduate and graduate students to train them in areas including real algebraic geometry, the geometry of polynomials, tropical geometry, and their applications outside of mathematics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
行列式和多项式是数学科学研究人员经常使用的基本对象。这个项目的目的是更好地理解一些类的多项式,像行列式,在数学中无处不在。 双曲多项式和更一般的对数凹多项式是真实的多项式,它们共享行列式的许多有用的函数性质。双曲多项式的研究起源于20世纪50年代的偏微分方程,并已被用于理解凸优化,算子理论和组合学中的问题。关于这类多项式仍有许多重要的问题有待解决,由于它们的普遍性和具体性,结构性结果往往有着广泛的应用。该项目的教育部分包括为本科生和研究生举办的一系列夏季研讨会,为他们提供数学研究的重要和活跃领域的背景,以及接触其在其他领域的应用。近年来,对数凹多项式和拟阵之间的密切联系,这是独立结构的组合模型,发展。这些多项式的系数给出了可以有效采样的离散概率分布。本研究的目的是使用真实的代数和离散几何,以进一步发展我们对这些类的多项式的理解,以期在近似算法,组合数学,凸优化和算子理论的应用。该奖项还将支持本科生和研究生的研讨会,在包括真实的代数几何,多项式几何,热带几何及其在数学之外的应用等领域对他们进行培训。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cynthia Vinzant其他文献

A semidefinite programming characterization of the Crawford number
克劳福德数的半定规划表征
  • DOI:
    10.48550/arxiv.2403.08617
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shmuel Friedland;Cynthia Vinzant
  • 通讯作者:
    Cynthia Vinzant
Characterizing principal minors of symmetric matrices via determinantal multiaffine polynomials
  • DOI:
    10.1016/j.jalgebra.2023.09.030
  • 发表时间:
    2024-01-15
  • 期刊:
  • 影响因子:
  • 作者:
    Abeer Al Ahmadieh;Cynthia Vinzant
  • 通讯作者:
    Cynthia Vinzant
Lower bounds for optimal alignments of binary sequences
  • DOI:
    10.1016/j.dam.2009.06.028
  • 发表时间:
    2009-08-06
  • 期刊:
  • 影响因子:
  • 作者:
    Cynthia Vinzant
  • 通讯作者:
    Cynthia Vinzant
Higher dimensional Fourier quasicrystals from Lee–Yang varieties
  • DOI:
    10.1007/s00222-024-01307-8
  • 发表时间:
    2024-12-16
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Lior Alon;Mario Kummer;Pavel Kurasov;Cynthia Vinzant
  • 通讯作者:
    Cynthia Vinzant

Cynthia Vinzant的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cynthia Vinzant', 18)}}的其他基金

CAREER: Determinantal, hyperbolic, and log-concave polynomials in theory and applications
职业:行列式、双曲式和对数凹多项式的理论和应用
  • 批准号:
    2153746
  • 财政年份:
    2021
  • 资助金额:
    $ 41.86万
  • 项目类别:
    Continuing Grant
Real algebraic and combinatorial structures in matrix spaces
矩阵空间中的实代数和组合结构
  • 批准号:
    1620014
  • 财政年份:
    2016
  • 资助金额:
    $ 41.86万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1204447
  • 财政年份:
    2012
  • 资助金额:
    $ 41.86万
  • 项目类别:
    Fellowship Award

相似海外基金

Universality of determinantal point processes and analysis of random phenomena
行列式点过程的普遍性和随机现象的分析
  • 批准号:
    23H01077
  • 财政年份:
    2023
  • 资助金额:
    $ 41.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Diagonal Grobner Geometry of Generalized Determinantal Varieties
广义行列式簇的对角格罗布纳几何
  • 批准号:
    2344764
  • 财政年份:
    2023
  • 资助金额:
    $ 41.86万
  • 项目类别:
    Standard Grant
Diagonal Grobner Geometry of Generalized Determinantal Varieties
广义行列式簇的对角格罗布纳几何
  • 批准号:
    2246941
  • 财政年份:
    2023
  • 资助金额:
    $ 41.86万
  • 项目类别:
    Standard Grant
CAREER: Determinantal, hyperbolic, and log-concave polynomials in theory and applications
职业:行列式、双曲式和对数凹多项式的理论和应用
  • 批准号:
    2153746
  • 财政年份:
    2021
  • 资助金额:
    $ 41.86万
  • 项目类别:
    Continuing Grant
Local Cohomology, Differential Operators, and Determinantal Rings
局部上同调、微分算子和行列环
  • 批准号:
    2101671
  • 财政年份:
    2021
  • 资助金额:
    $ 41.86万
  • 项目类别:
    Continuing Grant
Determinantal structures in the integrable probability
可积概率中的行列式结构
  • 批准号:
    20K03626
  • 财政年份:
    2020
  • 资助金额:
    $ 41.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Determinantal point fields and machine learning
行列式点域和机器学习
  • 批准号:
    20K20884
  • 财政年份:
    2020
  • 资助金额:
    $ 41.86万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Determinantal Rings, Local Cohomology, and Tight Closure
行列式环、局部上同调和紧闭
  • 批准号:
    1801285
  • 财政年份:
    2018
  • 资助金额:
    $ 41.86万
  • 项目类别:
    Continuing Grant
Analysis of random phenomena and its applications from the viewpoint of determinantal point processes
从行列式点过程的角度分析随机现象及其应用
  • 批准号:
    18H01124
  • 财政年份:
    2018
  • 资助金额:
    $ 41.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on constructions of numerical integration methods via determinantal point processes and its applications
行列式点过程数值积分方法的构造及其应用研究
  • 批准号:
    16K17645
  • 财政年份:
    2016
  • 资助金额:
    $ 41.86万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了