Tropical Combinatorics of Graphs and Matroids

图和拟阵的热带组合

基本信息

项目摘要

This project is jointly funded by the Combinatorics Program and the Established Program to Stimulate Competitive Research (EPSCoR). Combinatorics is a subfield of mathematics concerned with the study of discrete structures. This project will investigate graphs and matroids, which are two classical topics in combinatorics. A graph is essentially the same as a network, a concept which is now widely known due to the popularity of social networks. On the other hand, a matroid is a structure which abstracts the notion of linear independence in mathematics, e.g. whether or not three given points in a plane lie on a common line. Combinatorics admits many important connections with algebraic geometry, which is the study of solutions to polynomial equations, and tropical geometry which is a combinatorial version of algebraic geometry. One of the strengths of tropical geometry is that some difficult questions in algebraic geometry can be reduced to problems in combinatorics. There is a complementary strength of this theory: it provides a new perspective on classical combinatorial objects such as graphs and matroids, which can be viewed as tropical curves and tropical linear spaces, respectively, thus opening these fields up to new techniques and questions. This project will investigate graphs and matroids from the perspective of tropical geometry. The project will also provide research opportunities and support for graduate students, as well as outreach activities to rural high schools in Vermont. A graph can be viewed as the tropicalization of a curve over a non-Archimedean field. Divisor theory for curves then translates to the classical study of chip-firing. This has allowed for deep insights into chip-firing such as the Riemann-Roch theorem for graphs. The PI aims to further understand divisor theory for graphs, connections to graph orientations, combinatorial representation theory, and the Tutte polynomial. Tropical geometry is concerned with the study of balanced polyhedral complexes even when they do not arise as the tropicalizations of varieties. This perspective has been very fruitful in recent years as all matroids, not only the realizable ones, fit into this framework. The PI will further investigate Hodge theory for matroids as well as tropical connections to more classical aspects of polytope theory such as associahedra and other families of generalized permutahedra.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由组合学计划和刺激竞争研究的既定计划(EPSCoR)共同资助。组合数学是研究离散结构的数学分支。 本计画将探讨图与拟阵,这是组合数学中的两个经典主题。 图本质上与网络相同,由于社交网络的流行,网络是现在广为人知的概念。 另一方面,拟阵是一种抽象数学中线性独立性概念的结构,例如平面上的三个给定点是否位于一条公共线上。 组合数学承认许多重要的连接与代数几何,这是研究解决方案的多项式方程,和热带几何,这是一个组合版本的代数几何。热带几何的优点之一是,代数几何中的一些困难问题可以简化为组合数学中的问题。 这个理论有一个互补的优势:它提供了一个新的视角,经典的组合对象,如图和拟阵,可以被视为热带曲线和热带线性空间,分别,从而打开这些领域的新技术和问题。 本专题将从热带几何的角度研究图和拟阵。 该项目还将为研究生提供研究机会和支持,并向佛蒙特州的农村高中提供推广活动。一个图可以看作是一条曲线在非阿基米德域上的热带化。 然后,曲线的除数理论转化为切屑燃烧的经典研究。 这使得对芯片发射的深入了解成为可能,例如图形的黎曼-罗奇定理。 PI旨在进一步理解图的除数理论,与图方向的连接,组合表示理论和Tutte多项式。 热带几何学研究的是平衡的多面体复合体,即使它们不是作为变体的热带化而出现的。 这种观点在近年来已经非常富有成效,因为所有拟阵,而不仅仅是可实现的拟阵,都适合这个框架。 PI将进一步研究霍奇理论的拟阵以及热带连接到多面体理论的更经典的方面,如associahedra和其他家庭的广义置换hedra.This奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Spencer Backman其他文献

Chip-Firing and Riemann-Roch Theory for Directed Graphs
有向图的 Chip-Firing 和 Riemann-Roch 理论
Transfinite Ford-Fulkerson on a Finite Network
有限网络上的超限 Ford-Fulkerson
  • DOI:
    10.3233/com-180082
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Spencer Backman;T. Huynh
  • 通讯作者:
    T. Huynh
Simplicial generation of Chow rings of matroids
拟阵 Chow 环的单纯生成
Infinite reduction of divisors on metric graphs
度量图上除数的无限减少
  • DOI:
    10.1016/j.ejc.2013.06.024
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Spencer Backman
  • 通讯作者:
    Spencer Backman
Explicit deformation of lattice ideals via chip-firing games on directed graphs
通过有向图上的芯片发射游戏实现晶格理想的显式变形
  • DOI:
    10.1007/s10801-015-0618-x
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Spencer Backman;M. Manjunath
  • 通讯作者:
    M. Manjunath

Spencer Backman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
  • 批准号:
    RGPIN-2016-05397
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
  • 批准号:
    RGPIN-2016-05397
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Pseudorandom Structures in Graphs and Combinatorics
图和组合中的伪随机结构
  • 批准号:
    1954170
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
  • 批准号:
    RGPIN-2016-05397
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorics of Mixed Graphs -- Complexity and Homomorphism
混合图的组合——复杂性和同态
  • 批准号:
    RGPIN-2019-04857
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorics of Mixed Graphs -- Complexity and Homomorphism
混合图的组合——复杂性和同态
  • 批准号:
    DGECR-2019-00102
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Launch Supplement
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
  • 批准号:
    RGPIN-2016-05397
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorics of Mixed Graphs -- Complexity and Homomorphism
混合图的组合——复杂性和同态
  • 批准号:
    RGPIN-2019-04857
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorics of Edge Ideals of Double Vertex Graphs
双顶点图边理想的组合学
  • 批准号:
    539694-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了