Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics

图、设计、代码和群:代数组合主题

基本信息

  • 批准号:
    RGPIN-2016-05397
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The title of this proposal reflects my interests in a broad range of topics in the branch of discrete mathematics known as algebraic combinatorics, primarily in graph theory and combinatorial design theory, but also in connection with finite group theory and coding theory. These topics have widespread appeal. Graph theory has applications as diverse as the modelling of computer networks, or organic chemical compounds such as long-chain polymers. Design theory originated in the design of statistical experiments and the scheduling of tournaments. The study of finite permutation groups is one of the oldest subjects in abstract algebra, being a mathematical abstraction of the notion of symmetry, but one which is very relevant in reducing the difficulty of computational problem solving. Coding theory is the mathematical study of the accurate transmission and storage of data. There is also a significant overlap between each of these areas. This proposal has three components. The first part concerns graphs and groups, studying the metric dimension of graphs (efficiently locating vertices using distances, similar to how a smartphone determines its geographical location) and related parameters for permutation groups. The second part is to build an online database of distance-regular and strongly regular graphs, which should become a valuable resource for the mathematics research community. The third part concerns combinatorial design theory, developing the theory of generalized packing and covering designs, which provide a common framework in which to understand a variety of different families of combinatorial designs simultaneously, as well as having applications to areas such as coding, communications and software testing. All three components of the proposal feature projects well-suited to the training of highly qualified personnel, from undergraduate students up to postdoctoral research fellows.
这个建议的标题反映了我的兴趣在广泛的主题在分支离散数学称为代数组合,主要是在图论和组合设计理论,但也与有限群理论和编码理论。 这些话题具有广泛的吸引力。 图论的应用范围很广,比如计算机网络的建模,或者长链聚合物等有机化合物的建模。 设计理论起源于统计实验的设计和比赛的安排。 有限置换群的研究是抽象代数中最古老的课题之一,是对称性概念的数学抽象,但在降低计算问题解决难度方面非常相关。 编码理论是对数据的精确传输和存储的数学研究。 这些领域之间也有很大的重叠。 这项建议有三个组成部分。 第一部分涉及图和群,研究图的度量维度(使用距离有效地定位顶点,类似于智能手机如何确定其地理位置)和置换群的相关参数。 第二部分是建立一个距离正则图和强正则图的在线数据库,这将成为数学研究界的一个宝贵资源。 第三部分涉及组合设计理论,发展了广义包装和覆盖设计理论,它提供了一个共同的框架,同时理解各种不同的组合设计家族,以及在编码,通信和软件测试等领域的应用。 该提案的所有三个组成部分都具有非常适合培养高素质人才的项目,从本科生到博士后研究员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bailey, Robert其他文献

Real world clinical outcomes and patient characteristics for canagliflozin treated patients in a specialty diabetes clinic
  • DOI:
    10.1080/03007995.2016.1238354
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Johnson, June Felice;Parsa, Rahul;Bailey, Robert
  • 通讯作者:
    Bailey, Robert
Successful hemostasis of active lower GI bleeding using a hemostatic powder as monotherapy, combination therapy, or rescue therapy
  • DOI:
    10.1016/j.gie.2018.10.029
  • 发表时间:
    2019-04-01
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Hookey, Lawrence;Barkun, Alan;Bailey, Robert
  • 通讯作者:
    Bailey, Robert
An In Vitro Biomechanical Comparison of a Locking Compression Plate Fixation and Kerf Cut Cylinder Fixation for Ventral Arthrodesis of the Fourth and the Fifth Equine Cervical Vertebrae
  • DOI:
    10.1111/j.1532-950x.2010.00733.x
  • 发表时间:
    2010-12-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Reardon, Richard J. M.;Bailey, Robert;Lischer, Christoph
  • 通讯作者:
    Lischer, Christoph
Frequency of full, partial and no recovery from subsyndromal deliriumin older hospital inpatients
A Novel Adaptation of Distress Tolerance Skills Training Among Military Veterans: Outcomes in Suicide-Related Events
  • DOI:
    10.1016/j.cbpra.2014.04.001
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Denckla, Christy A.;Bailey, Robert;Chen, Cory K.
  • 通讯作者:
    Chen, Cory K.

Bailey, Robert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bailey, Robert', 18)}}的其他基金

Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
  • 批准号:
    RGPIN-2016-05397
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
  • 批准号:
    RGPIN-2016-05397
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
  • 批准号:
    RGPIN-2016-05397
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
  • 批准号:
    RGPIN-2016-05397
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
  • 批准号:
    RGPIN-2016-05397
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
  • 批准号:
    RGPIN-2016-05397
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Arctic freshwater systems: hydrology and ecology
北极淡水系统:水文学和生态学
  • 批准号:
    369665-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Government of Canada's Program for International Polar Year
Multivariate natural and stressor gradients in freshwater ecosystems
淡水生态系统中的多元自然梯度和应激梯度
  • 批准号:
    36772-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Arctic freshwater systems: hydrology and ecology
北极淡水系统:水文学和生态学
  • 批准号:
    369665-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Government of Canada's Program for International Polar Year
Multivariate natural and stressor gradients in freshwater ecosystems
淡水生态系统中的多元自然梯度和应激梯度
  • 批准号:
    36772-2005
  • 财政年份:
    2008
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Combinatorial designs with cyclic structures for designs of experiments, combinatorial testing, and codes
用于实验设计、组合测试和代码的循环结构组合设计
  • 批准号:
    22K13949
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
  • 批准号:
    RGPIN-2016-05397
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
A study of complex spherical codes and designs by algebraic methods
用代数方法研究复杂的球形代码和设计
  • 批准号:
    22K03410
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
  • 批准号:
    RGPIN-2016-05397
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
  • 批准号:
    RGPIN-2016-05397
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Gray Codes in Balanced Incomplete Block Designs
平衡不完全块设计中的格雷码
  • 批准号:
    504237-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Study on complex spherical codes and designs
复杂球形代码和设计的研究
  • 批准号:
    18K03395
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
  • 批准号:
    RGPIN-2016-05397
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Gray Codes in Balanced Incomplete Block Designs
平衡不完全块设计中的格雷码
  • 批准号:
    504237-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
New constructions of designs, graphs and codes over finite fields based on finite geometry and algebraic methods
基于有限几何和代数方法的有限域上的设计、图形和代码的新构造
  • 批准号:
    17K14236
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了