Kakeya sets and rectifiability
挂屋组和可校正性
基本信息
- 批准号:2247233
- 负责人:
- 金额:$ 18.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project studies the interplay between Fourier analysis and the geometry of planar sets. The Fourier transform, which decomposes a function into pure oscillations at various frequencies, has found many applications outside of pure mathematics, including to signal processing, data compression, and medical imaging. Despite this, many fundamental questions about the convergence of the Fourier transform are still not well-known. Such questions are connected to the geometric properties of Kakeya sets, which are shapes that contain lines in many directions but have small total area. This project analyzes Kakeya-type sets using techniques from various fields, including geometric measure theory and harmonic analysis. In addition, the Principal Investigator will continue to be involved as an instructor and mentor in summer math camps and to participate in workshops and conferences, in order to introduce more junior students to mathematical analysis, and to introduce more advanced students to current research in the area.The aim of this project is to study properties of Kakeya-type sets and quantitative relations between projections and rectifiability. These topics are closely related. For example, via point-line duality in the projective plane, geometric properties of projection mappings can be used to prove the existence of planar Kakeya sets. Quantitative analogues of this theorem will be considered using tools such as multiscale analysis. Multiscale decompositions will also be investigated in the general setting of metric spaces; such considerations are relevant for applications to theoretical and algorithmic computer science as well as to metric geometry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目研究傅立叶分析和平面集合几何之间的相互作用。傅里叶变换将函数分解成各种频率的纯振荡,在纯数学之外有许多应用,包括信号处理、数据压缩和医学成像。尽管如此,关于傅里叶变换的收敛的许多基本问题仍然不为人所知。这样的问题与Kakeya集的几何性质有关,Kakeya集是包含多个方向的线但总面积很小的形状。这个项目使用不同领域的技术来分析Kakeya类型的集合,包括几何测度论和调和分析。此外,首席调查员将继续担任暑期数学夏令营的导师和导师,并参加工作坊和会议,以向更多的低年级学生介绍数学分析,并向更多的高级学生介绍该领域的当前研究。本项目的目的是研究Kakeya类型集合的性质以及投影和可纠正性之间的定量关系。这些话题是密切相关的。例如,通过射影平面上的点-线对偶,可以利用射影映射的几何性质证明平面Kakeya集的存在性。这一定理的定量类比将使用多尺度分析等工具加以考虑。多尺度分解也将在公制空间的一般设置中进行研究;这些考虑与理论和算法计算机科学以及公制几何的应用相关。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Chang其他文献
IMMUNOTHERAPY/BIOLOGICAL THERAPIES
免疫疗法/生物疗法
- DOI:
10.1093/neuonc/not178 - 发表时间:
2013 - 期刊:
- 影响因子:15.9
- 作者:
J. Campian;D. Gladstone;P. Ambady;X. Ye;K. King;I. Borrello;S. Petrik;M. Golightly;M. Holdhoff;S. Grossman;R. Bhardwaj;M. Chakravadhanula;V. Ozols;Joey Georges;Elizabeth Carlson;C. Hampton;W. Decker;Y. Chiba;N. Hashimoto;Naoki Kagawa;R. Hirayama;A. Tsuboi;Y. Oji;Y. Oka;H. Sugiyama;T. Yoshimine;Bryan D Choi;Patrick C. Gedeon;J. Herndon;L. Sanchez;D. Mitchell;D. Bigner;J. Sampson;Young A. Choi;Hetal Pandya;D. Gibo;W. Debinski;T. Cloughesy;L. Liau;E. Chiocca;D. Jolly;J. Robbins;Derek Ostertag;C. Ibañez;H. Gruber;N. Kasahara;M. Vogelbaum;S. Kesari;T. Mikkelsen;S. Kalkanis;J. Landolfi;Stephen Bloomfield;G. Foltz;D. Pertschuk;R. Everson;Richard M. Jin;M. Safaee;D. Lisiero;S. Odesa;L. Liau;R. Prins;S. Gholamin;S. Mitra;Chase Richard;A. Achrol;S. Kahn;A. K. Volkmer;J. Volkmer;S. Willingham;Doosik Kong;J. Shin;M. Monje;Yoon;I. Weissman;S. Cheshier;Y. Kanemura;M. Sumida;E. Yoshioka;A. Yamamoto;D. Kanematsu;A. Takada;M. Nonaka;S. Nakajima;S. Goto;T. Kamigaki;M. Takahara;R. Maekawa;T. Shofuda;S. Moriuchi;M. Yamasaki;R. Kebudi;F. Cakir;O. Gorgun;F. Agaoglu;E. Darendeliler;Y. Lin;Yunjie Wang;Xiaoguang Qiu;T. Jiang;Guozhen Zhang;Jiangfei Wang;H. Okada;L. Butterfield;R. Hamilton;J. Drappatz;J. Engh;N. Amankulor;M. Lively;M. Chan;A. Salazar;D. Potter;E. Shaw;F. Lieberman;Yong Choi;John W. Park;S. Phuphanich;C. Wheeler;J. Rudnick;Jethro Hu;M. Mazer;Hong Wang;M. Nuno;A. Guevarra;C. Sánchez;Xuemo Fan;J. Ji;R. Chu;J. Bender;E. Hawkins;K. Black;John S. Yu;E. Reap;G. Archer;P. Norberg;R. Schmittling;S. Nair;X. Cui;D. Snyder;V. Chandramohan;C. Kuan;Hai Yan;D. Reardon;Gordon Li;L. Recht;K. Fink;L. Nabors;D. Tran;A. Desjardins;N. Chandramouli;J. Duic;M. Groves;A. Clarke;T. Hawthorne;Jennifer Green;M. Yellin;G. Rigakos;Olympia Spyri;P. Nomikos;F. Stavridi;I. Grossi;Ioanna Theodorakopoulou;Avraam Assi;G. Kouvatseas;E. Papadopoulou;G. Nasioulas;S. Labropoulos;E. Razis;A. Ravi;D. N. Tang;Padmanee Sharma;Sadhak Sengupta;P. Sampath;H. Soto;K. L. Erickson;C. Malone;M. Hickey;Edward Ha;E. Young;B. Ellingson;C. Kruse;J. Sul;N. Hilf;S. Kutscher;O. Schoor;J. Lindner;C. Reinhardt;T. Kreisl;F. Iwamoto;H. Fine;H. Singh;L. Teijeira;I. Gil;B. Hernández;M. Martínez;Susana de la Cruz Sánchez;A. Viúdez;I. Hernández;M. J. Lecumberri;R. Grandez;A. F. D. Lascoiti;R. García;Alissa A. Thomas;J. Fisher;U. Baron;S. Olek;Harker Rhodes;J. Gui;T. Hampton;L. Tafe;G. Tsongalis;J. Lefferts;H. Wishart;J. Kleen;Michael B. Miller;M. Ernstoff;C. Fadul;G. Vlahović;K. Peters;T. Ranjan;A. Friedman;H. Friedman;Denise Lally;D. Wainwright;M. Dey;Alan Chang;Yu Cheng;Yu Han;M. Lesniak;M. Weller;K. Kaulich;B. Hentschel;J. Felsberg;D. Gramatzki;T. Pietsch;M. Simon;M. Westphal;G. Schackert;J. Tonn;M. Loeffler;G. Reifenberger;Hongqiang Wang;Minlin Xu;C. Patil;C. Wheeler - 通讯作者:
C. Wheeler
Temporal Trends in the Microbiological Characteristics of Sepsis in the United States: A Population Based Study
美国脓毒症微生物特征的时间趋势:一项基于人群的研究
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:3.1
- 作者:
P. Tsou;C. Yo;Yenh;Gregory Yungtum;W. Hsu;Jui;Ke;Alan Chang;I;Chien - 通讯作者:
Chien
PSS323 - Redox Regulated Mitophagy in the Lung during Murine Sepsis
- DOI:
10.1016/j.freeradbiomed.2013.10.748 - 发表时间:
2013-11-01 - 期刊:
- 影响因子:
- 作者:
Alan Chang;Bryan Kraft;Hagir Suliman;Claude Piantadosi - 通讯作者:
Claude Piantadosi
Computational Learning Theory & Fourier Analysis
计算学习理论
- DOI:
10.4230/lipics.ccc.2021.10 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Alan Chang - 通讯作者:
Alan Chang
Does variance risk premium predict expected returns?
方差风险溢价可以预测预期收益吗?
- DOI:
10.1080/13504851.2023.2178620 - 发表时间:
2023 - 期刊:
- 影响因子:1.6
- 作者:
Xian;Yueh;Alan Chang;Shih - 通讯作者:
Shih
Alan Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于Fuzzy Sets的视频差错掩盖技术研究
- 批准号:60672134
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
浅电子陷阱掺杂剂对光电子衰减过程的影响
- 批准号:10354001
- 批准年份:2003
- 资助金额:15.0 万元
- 项目类别:专项基金项目
相似海外基金
Spatial restriction of exponential sums to thin sets and beyond
指数和对稀疏集及以上的空间限制
- 批准号:
2349828 - 财政年份:2024
- 资助金额:
$ 18.05万 - 项目类别:
Standard Grant
Research Initiation Award: Turan-type problems on partially ordered sets
研究启动奖:偏序集上的图兰型问题
- 批准号:
2247163 - 财政年份:2023
- 资助金额:
$ 18.05万 - 项目类别:
Standard Grant
Advances on Combinatorics of the Real Line and Topology
实线与拓扑组合学研究进展
- 批准号:
23K03198 - 财政年份:2023
- 资助金额:
$ 18.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New approaches for leveraging single-cell data to identify disease-critical genes and gene sets
利用单细胞数据识别疾病关键基因和基因集的新方法
- 批准号:
10768004 - 财政年份:2023
- 资助金额:
$ 18.05万 - 项目类别:
Collaborative Research: Data-Driven Invariant Sets for Provably Safe Autonomy
协作研究:数据驱动的不变集可证明安全的自治
- 批准号:
2303157 - 财政年份:2023
- 资助金额:
$ 18.05万 - 项目类别:
Standard Grant
LEAPS-MPS: Controllable sets for nonlinear switched models with applications to infectious diseases
LEAPS-MPS:非线性切换模型的可控集及其在传染病中的应用
- 批准号:
2315862 - 财政年份:2023
- 资助金额:
$ 18.05万 - 项目类别:
Standard Grant
On a Combinatorial Characterization of Dynamical Invariant Sets of Regulatory Networks
关于调节网络动态不变集的组合表征
- 批准号:
23K03240 - 财政年份:2023
- 资助金额:
$ 18.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Constructing large scale data sets, developing methods to analyze such data sets, and their empirical implementations
构建大规模数据集,开发分析此类数据集的方法及其实证实施
- 批准号:
23K17285 - 财政年份:2023
- 资助金额:
$ 18.05万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Investigating mechanisms of consumer reactions to promotions with brand consideration sets.
研究消费者对带有品牌考虑因素的促销活动的反应机制。
- 批准号:
23KJ0655 - 财政年份:2023
- 资助金额:
$ 18.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows