Spatial restriction of exponential sums to thin sets and beyond

指数和对稀疏集及以上的空间限制

基本信息

  • 批准号:
    2349828
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

In recent years, the PI has developed a new tool called decoupling that measures the extent to which waves traveling in different directions interact with each other. While this tool was initially intended to analyze differential equations that describe wave cancellations, it has also led to important breakthroughs in number theory. For example, Diophantine equations are potentially complicated systems of equations involving whole numbers. They are used to generate scrambling and diffusion keys, which are instrumental in encrypting data. Mathematicians are interested in counting the number of solutions to such systems. Unlike waves, numbers do not oscillate, at least not in an obvious manner. But we can think of numbers as frequencies and thus associate them with waves. In this way, problems related to counting the number of solutions to Diophantine systems can be rephrased in the language of quantifying wave interferences. This was the case with PI's breakthrough resolution of the Main Conjecture in Vinogradov's Mean Value Theorem. The PI plans to further extend the scope of decoupling toward the resolution of fundamental problems in harmonic analysis, geometric measure theory, and number theory. He will seek to make the new tools accessible and useful to a large part of the mathematical community. This project provides research training opportunities for graduate students.Part of this project is aimed at developing the methodology to analyze the Schrödinger maximal function in the periodic setting. Building on his recent progress, the PI aims to incorporate Fourier analysis and more delicate number theory into the existing combinatorial framework. Decouplings have proved successful in addressing a wide range of problems in such diverse areas as number theory, partial differential equations, and harmonic analysis. The current project seeks to further expand the applicability of this method in new directions. One of them is concerned with finding sharp estimates for the Fourier transforms of fractal measures supported on curved manifolds. The PI seeks to combine decoupling with sharp estimates for incidences between balls and tubes. In yet another direction, he plans to further investigate the newly introduced tight decoupling phenomenon. This has deep connections to both number theory and the Lambda(p) estimates.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,PI开发了一种名为“去耦”的新工具,可以测量不同方向传播的波相互作用的程度。虽然这个工具最初是用来分析描述波消的微分方程的,但它也导致了数论的重要突破。例如,丢番图方程是包含整数的复杂方程组。它们被用来生成置乱和扩散密钥,这是加密数据的工具。数学家对计算这类系统的解的数量很感兴趣。与波不同,数字不会振荡,至少不会以一种明显的方式振荡。但我们可以把数字看作频率,从而把它们与波联系起来。这样,与计算丢番图系统的解的数目有关的问题可以用量化波干涉的语言来重新表述。这就是PI突破解决维诺格拉多夫中值定理中的主要猜想的情况。PI计划进一步扩大解耦的范围,以解决谐波分析、几何测度理论、数论等基本问题。他将努力使这些新工具能够为数学界的大部分人所用。本项目为研究生提供研究训练机会。本计画的部分目的在于发展分析周期设定中Schrödinger最大函数的方法。以他最近的进展为基础,PI的目标是将傅里叶分析和更精细的数论纳入现有的组合框架。解耦在解决数论、偏微分方程和谐波分析等不同领域的广泛问题方面已被证明是成功的。目前的项目旨在进一步扩大该方法在新方向上的适用性。其中之一是关于寻找在弯曲流形上支持的分形测度的傅里叶变换的尖锐估计。PI试图将解耦与球与管之间的发生率的精确估计结合起来。在另一个方向上,他计划进一步研究新引入的紧密脱钩现象。这与数论和Lambda(p)估计都有很深的联系。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ciprian Demeter其他文献

Modulation invariant bilinear T(1) theorem
  • DOI:
    10.1007/s11854-009-0034-z
  • 发表时间:
    2010-01-19
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Árpád Bényi;Ciprian Demeter;Andrea R. Nahmod;Christoph M. Thiele;Rodolfo H. Torres;Paco Villarroya
  • 通讯作者:
    Paco Villarroya
Endpoint Bounds for the Quartile Operator
Bilinear Fourier Restriction Theorems
Level set estimates for the periodic Schrödinger maximal function on math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"msupmrowmi mathvariant="double-struck"T/mi/mrowmrowmn1/mn/mrow/msup/math
关于数学中周期薛定谔极大函数的水平集估计 xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math" msup mrow mi mathvariant="double-struck" T/mi mrow mrow mn1/mn mrow/msup/math
  • DOI:
    10.1016/j.aim.2025.110186
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Ciprian Demeter
  • 通讯作者:
    Ciprian Demeter

Ciprian Demeter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ciprian Demeter', 18)}}的其他基金

Small Cap and Large Cap Decoupling
小盘股和大盘股脱钩
  • 批准号:
    2055156
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: New Decouplings and Applications
合作研究:新的解耦和应用
  • 批准号:
    1800305
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Decouplings and applications
解耦和应用
  • 批准号:
    1500461
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Problems in Time Frequency Analysis
时频分析中的问题
  • 批准号:
    1161752
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Multilinearity in one and two dimensions
一维和二维的多重线性
  • 批准号:
    0901208
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Multilinear Operators in Harmonic Analysis and Ergodic Theory
调和分析和遍历理论中的多线性算子
  • 批准号:
    0742740
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Multilinear Operators in Harmonic Analysis and Ergodic Theory
调和分析和遍历理论中的多线性算子
  • 批准号:
    0556389
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
  • 批准号:
    10824044
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
Meal timing and energy restriction as regulators of central and peripheral human rhythms
进餐时间和能量限制作为中枢和外周人类节律的调节器
  • 批准号:
    BB/Y006852/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Investigation of compounds that mimic the effects of calorie restriction on healthy life extension and their mechanisms of action
研究模拟热量限制对延长健康寿命的影响的化合物及其作用机制
  • 批准号:
    23H03331
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Phenylalanine Restriction in BNCT to Enhance L-BPA Uptake in Tumor
BNCT 中的苯丙氨酸限制可增强肿瘤中 L-BPA 的摄取
  • 批准号:
    23K14924
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Regulation of RNA sensing and viral restriction by RNA structures
RNA 结构对 RNA 传感和病毒限制的调节
  • 批准号:
    10667802
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Time Restricted Eating to Mitigate Obesity in Veterans with Spinal Cord Injury
限制时间饮食以减轻脊髓损伤退伍军人的肥胖
  • 批准号:
    10752306
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Technology Assisted Treatment for Binge Eating Behavior
暴食行为的技术辅助治疗
  • 批准号:
    10603975
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Exploiting Metabolism to Uncloak Epstein-Barr Virus Immunogens in Latently Infected B-cells
利用代谢揭示潜伏感染 B 细胞中的 Epstein-Barr 病毒免疫原
  • 批准号:
    10889325
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Diversity Supplement to Microvascular mechanisms of growth restriction after environmental toxicant exposure (R01ES031285)
环境毒物暴露后生长受限的微血管机制的多样性补充(R01ES031285)
  • 批准号:
    10849145
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Core 1: Biostatistics & Bioinformatics Core
核心1:生物统计学
  • 批准号:
    10716157
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了