KMS States of Quantum Cuntz-Krieger Algebras

量子 Cuntz-Krieger 代数的 KMS 态

基本信息

  • 批准号:
    2247587
  • 负责人:
  • 金额:
    $ 15.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

The theory of C*-algebras, which originated in the 1930s in the study of quantum mechanics, is now a vital part of modern mathematical analysis, with applications across the mathematical sciences. C*-algebras arise naturally in connection with a variety of mathematical objects of interest, including groups, dynamical systems, and discrete graphs. This project concerns the structure and properties of C*-algebras associated to quantum graphs. A relatively recent generalization of the classical notion of a discrete graph, quantum graphs have proven to be useful in quantum information theory: just as classical discrete graphs encode confusion due to noise in a classical communication channel, quantum graphs encode confusion due to noise in a quantum channel. The project will generate new methods for analyzing the structure of quantum Cuntz-Krieger algebras and their underlying quantum graphs, and explore their interplay with quantum information theory, a topic of growing global interest. Educational opportunities for undergraduates will be provided through research projects, and a new, interdisciplinary certification program in introductory quantum information theory at the PI’s home institution. Student researchers and visiting speakers will be recruited with a focus on diversity and representation.Given a simple discrete graph, the Cuntz–Krieger algebra for the graph is a universal C*-algebra which encodes the graph’s edge relations. The Kubo-Martin-Schwinger (KMS) states on a C*-algebra can be physically interpreted as states of thermal equilibrium for a quantum system. The KMS states on the Cuntz–Krieger algebra of a simple discrete graph were classified by Exel in 2003 using an isomorphism between the Cuntz–Krieger algebra and the graph’s Exel crossed product, which is a universal C*-algebra that encodes natural dynamics on the graph’s infinite path space. For a quantum graph, an analogue of its Cuntz–Krieger algebra, called a quantum Cuntz–Krieger algebra, was defined in 2021. The principal investigator and her collaborators have since constructed Exel crossed products for some classes of quantum graphs and shown these Exel crossed products to be isomorphic to a quotient of the corresponding quantum Cuntz–Krieger algebras. The first major objective of this project is to design a canonical construction of an Exel crossed product for an arbitrary quantum graph and study its relationship to the corresponding quantum Cuntz–Krieger algebra. The second major objective of this project is to classify the KMS states on the Exel crossed product for a quantum graph and, following Exel’s techniques in the classical setting, use this relationship established in the first objective to classify the KMS states on the associated quantum Cuntz–Krieger algebra.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
C*-代数理论起源于20世纪30年代的量子力学研究,现在是现代数学分析的重要组成部分,在数学科学中有着广泛的应用。 C*-代数自然地出现在各种感兴趣的数学对象中,包括群,动力系统和离散图。 这个项目关注与量子图相关的C*-代数的结构和性质。 量子图是离散图的经典概念的一个相对较新的推广,量子图在量子信息理论中被证明是有用的:正如经典离散图编码由于经典通信信道中的噪声引起的混乱,量子图编码由于量子信道中的噪声引起的混乱。 该项目将产生新的方法来分析量子Cuntz-Krieger代数及其底层量子图的结构,并探索它们与量子信息理论的相互作用,这是全球日益关注的话题。 本科生的教育机会将通过研究项目提供,并在PI的家乡机构介绍量子信息理论的新的跨学科认证计划。 学生研究人员和访问演讲者将被招募,重点是多样性和代表性。给定一个简单的离散图,图的Cuntz-Krieger代数是一个通用的C*-代数,它编码了图的边关系。C*-代数上的Kubo-Martin-Schwinger(KMS)态可以物理上解释为量子系统的热平衡态。简单离散图的Cuntz-Krieger代数上的KMS状态是由Exel在2003年使用Cuntz-Krieger代数和图的Exel交叉积之间的同构来分类的,Exel交叉积是一个通用的C*-代数,它编码图的无限路径空间上的自然动力学。对于量子图,它的Cuntz-Krieger代数的类似物,称为量子Cuntz-Krieger代数,在2021年被定义。主要研究者和她的合作者已经为某些类的量子图构造了Exel交叉积,并证明这些Exel交叉积同构于相应的量子Cuntz-Krieger代数的商。该项目的第一个主要目标是设计任意量子图的Exel交叉积的规范构造,并研究其与相应的量子Cuntz-Krieger代数的关系。这个项目的第二个主要目标是对量子图的Exel交叉积上的KMS态进行分类,并且遵循Exel在经典环境中的技术,使用在第一个目标中建立的这种关系来对相关量子Cuntz上的KMS状态进行分类,该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值评估的支持和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lara Ismert其他文献

The Covariant Stone–von Neumann Theorem for Actions of Abelian Groups on $$ C^{*} $$ -Algebras of Compact Operators

Lara Ismert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lara Ismert', 18)}}的其他基金

Conference: Young Mathematicians in C*-Algebras 2022
会议:C*-代数中的青年数学家 2022
  • 批准号:
    2154557
  • 财政年份:
    2022
  • 资助金额:
    $ 15.99万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
  • 批准号:
    2339116
  • 财政年份:
    2024
  • 资助金额:
    $ 15.99万
  • 项目类别:
    Continuing Grant
Beginnings: Creating and Sustaining a Diverse Community of Expertise in Quantum Information Science (EQUIS) Across the Southeastern United States
起点:在美国东南部创建并维持一个多元化的量子信息科学 (EQUIS) 专业社区
  • 批准号:
    2322593
  • 财政年份:
    2023
  • 资助金额:
    $ 15.99万
  • 项目类别:
    Cooperative Agreement
Generation and control of multi-photon quantum entangled states by pre-post selection
通过前后选择产生和控制多光子量子纠缠态
  • 批准号:
    22KJ1874
  • 财政年份:
    2023
  • 资助金额:
    $ 15.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Beginnings: Creating and Sustaining a Diverse Community of Expertise in Quantum Information Science (EQUIS) Across the Southeastern United States
起点:在美国东南部创建并维持一个多元化的量子信息科学 (EQUIS) 专业社区
  • 批准号:
    2322592
  • 财政年份:
    2023
  • 资助金额:
    $ 15.99万
  • 项目类别:
    Cooperative Agreement
The source of quantum advantages: a unified approach to quantum resources of states and processes
量子优势的来源:状态和过程量子资源的统一方法
  • 批准号:
    22KF0067
  • 财政年份:
    2023
  • 资助金额:
    $ 15.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Study on light-field-driven dynamics for ultrafast control of quantum states of matter
用于物质量子态超快控制的光场驱动动力学研究
  • 批准号:
    23K13052
  • 财政年份:
    2023
  • 资助金额:
    $ 15.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Beginnings: Creating and Sustaining a Diverse Community of Expertise in Quantum Information Science (EQUIS) Across the Southeastern United States
起点:在美国东南部创建并维持一个多元化的量子信息科学 (EQUIS) 专业社区
  • 批准号:
    2322590
  • 财政年份:
    2023
  • 资助金额:
    $ 15.99万
  • 项目类别:
    Cooperative Agreement
Beginnings: Creating and Sustaining a Diverse Community of Expertise in Quantum Information Science (EQUIS) Across the Southeastern United States
起点:在美国东南部创建并维持一个多元化的量子信息科学 (EQUIS) 专业社区
  • 批准号:
    2322594
  • 财政年份:
    2023
  • 资助金额:
    $ 15.99万
  • 项目类别:
    Cooperative Agreement
Exploring the Properties of Quantum Many-Body Scar States in Dipolar Gases
探索偶极气体中量子多体疤痕态的性质
  • 批准号:
    2308540
  • 财政年份:
    2023
  • 资助金额:
    $ 15.99万
  • 项目类别:
    Continuing Grant
Creating an artificial optical material to filter single photon states for quantum technologies
创造一种人造光学材料来过滤量子技术的单光子态
  • 批准号:
    2892070
  • 财政年份:
    2023
  • 资助金额:
    $ 15.99万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了