Harvesting Actionable Results for Learning and Instruction: A Novel Mixed Methods Approach to Extracting and Validating Information from Diagnostic Assessment
收获可操作的学习和教学结果:一种从诊断评估中提取和验证信息的新型混合方法
基本信息
- 批准号:2300382
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Cognitive diagnostic models (CDMs) are an area of psychometric research that has seen substantial growth in the past decade. These assessment tools have received more attention because a simple overall test score does not serve teaching goals as a richer evaluation of the student's skills is needed to support tailored instruction. The investigator proposes to extend existing CDM psychometric approaches to develop the diagnostic facet status model (DFSM) for formative assessment design based on the high school physics curriculum. There are a number of working concerns with existing CDMs. They do not scale well to high-dimensional facet spaces, they require complex coding schemes based on expert input, they cannot explore intricate facet relationships, or option-based nominal responses. This project will build on existing CDM approaches to address these limitations. The project develops a new psychometric model, the DFSM, and a longitudinal extension, which can simultaneously model high-dimensional goal and intermediate understandings at item option level. The PIs develop a machine learning method to identify relations among facets, yielding a comprehensive "facet map" that reveals both attribute hierarchies and conjoined facets for the learning of physics. Finally, the researchers conduct qualitative studies to validate DFSM and longitudinal DFSM's output for learning and instruction.The project is supported by NSF's EDU Core Research Building Capacity in STEM Education Research (ECR: BCSER) program, which is designed to build investigators' capacity to carry out high-quality STEM education research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
认知诊断模型(CDMs)是心理测量学研究的一个领域,在过去的十年中有了长足的发展。这些评估工具受到了更多的关注,因为简单的整体测试分数并不能满足教学目标,因为需要对学生的技能进行更丰富的评估,以支持量身定制的教学。研究者建议扩展现有的CDM心理测量学方法,开发基于高中物理课程的形成性评价设计的诊断方面状态模型(DFSM)。现有清洁发展机制存在一些工作上的关切。它们不能很好地扩展到高维小面空间,它们需要基于专家输入的复杂编码方案,它们不能探索复杂的小面关系或基于选项的名义响应。本项目将以现有的清洁发展机制办法为基础,克服这些限制。该项目开发了一个新的心理测量模型,DFSM,和纵向扩展,它可以同时模拟高维目标和项目选项水平的中间理解。PI开发了一种机器学习方法来识别面之间的关系,产生一个全面的“面图”,揭示了属性层次结构和物理学习的联合面。最后,研究人员进行定性研究,以验证DFSM和纵向DFSM的输出为学习和教学。(ECR:BCSER)程序,该计划旨在培养调查人员的能力,高质量的STEM教育研究。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chun Wang其他文献
Broadband and Omnidirectionally Matched Absorber for a Discrete Source
用于离散源的宽带和全向匹配吸收器
- DOI:
10.1109/tap.2022.3226344 - 发表时间:
2023-02 - 期刊:
- 影响因子:5.7
- 作者:
Jingxin Tang;Liang Peng;Jie Wang;Xiaojun Hu;Chun Wang;Jianhua Ren;Huilong Yu;Lixin Ran;Dexin Ye - 通讯作者:
Dexin Ye
New method for reducing viscosity and shear stress in hydrogel 3D printing via multidimension vibration
通过多维振动降低水凝胶 3D 打印中粘度和剪切应力的新方法
- DOI:
10.1080/10255842.2022.2039129 - 发表时间:
2022-02 - 期刊:
- 影响因子:1.6
- 作者:
Sheng Lin;Bicong Li;Liang Yang;Yun Zhai;Xiaoyu Wang;Chun Wang - 通讯作者:
Chun Wang
Bone metastasis from lung cancer identified by genetic profiling.
通过基因分析鉴定肺癌骨转移。
- DOI:
10.3892/ol.2016.5458 - 发表时间:
2017 - 期刊:
- 影响因子:2.9
- 作者:
Zhu;Chun Wang;Hui;Xia Li;L;Z. Ding - 通讯作者:
Z. Ding
Determination of Power Distribution Network Configuration Using Non-Revisiting Genetic Algorithm
使用非重访遗传算法确定配电网络配置
- DOI:
10.1109/tpwrs.2013.2238259 - 发表时间:
2013-06 - 期刊:
- 影响因子:6.6
- 作者:
Chun Wang;Yuanhai Gao - 通讯作者:
Yuanhai Gao
Hecke-type triple sums associated with mock theta functions
与模拟 theta 函数相关的 Hecke 型三重和
- DOI:
10.1007/s11139-021-00499-4 - 发表时间:
2021-10 - 期刊:
- 影响因子:0
- 作者:
宋捍飞;Chun Wang - 通讯作者:
Chun Wang
Chun Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chun Wang', 18)}}的其他基金
CAREER: Biomimetic Engineering of Responsive Biomaterials
职业:响应性生物材料的仿生工程
- 批准号:
0547613 - 财政年份:2006
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似海外基金
Exploring "Actionable Information" for Learning Improvement in Rural East Africa: A Positive Deviance Approach
探索东非农村地区学习改进的“可行信息”:积极偏差方法
- 批准号:
24K00390 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Actionable deep learning under uncertainty for carbon-centric building operations
以碳为中心的建筑运营在不确定性下可行的深度学习
- 批准号:
2875807 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Studentship
An actionable secretory program that drives tumor progression in a genetically defined subset of lung squamous carcinoma
一种可操作的分泌程序,可驱动基因定义的肺鳞癌亚群中的肿瘤进展
- 批准号:
10646979 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Dissecting the tumor cell-immune TME axis to identify therapeutically actionable vulnerabilities that potentiate immunotherapy in GBM
剖析肿瘤细胞免疫 TME 轴,以确定可增强 GBM 免疫治疗的治疗上可操作的漏洞
- 批准号:
10743534 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Developing a Digital Platform for Providing Scalable and Actionable Feedback to Support Students' Development of Professional Skills
开发一个数字平台,提供可扩展且可操作的反馈,以支持学生的专业技能发展
- 批准号:
2235606 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Forecast of Actionable Radiation Belt Scenarios
可操作辐射带情景的预测
- 批准号:
10045682 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
EU-Funded
Floe SalivaData-AI: Develop a machine learning platform which personalises actionable health insight reports from consumer salivary biomarkers.
Floe SalivaData-AI:开发一个机器学习平台,根据消费者唾液生物标记物提供个性化的可操作健康洞察报告。
- 批准号:
10057341 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
Measurement Led Actionable Building Diagnostics
测量引导可行的建筑诊断
- 批准号:
10075160 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
CIVIC - FA Track A: Pilot - Community Resilience through Engaging, Actionable, Timely, High - REsolution Air Quality Information (CREATE - AQI)
CIVIC - FA 轨道 A:试点 - 通过参与、可操作、及时、高分辨率空气质量信息(CREATE - AQI)提高社区复原力
- 批准号:
2322009 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant