ERI: Enhanced Robustness for Approximate Quantum Computing Hardware and Applications

ERI:增强近似量子计算硬件和应用的鲁棒性

基本信息

  • 批准号:
    2300476
  • 负责人:
  • 金额:
    $ 19.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Some computational tasks in fields such as pharmacological development, healthcare, finances, and general science, take too long on classical computers to be practical or even usable. Quantum Computing can potentially accelerate these to just a few minutes or even seconds thanks to the strange properties of quantum mechanics. However, Quantum Computing is still in its infancy, and facing hurdles such as the very low number of quantum bits (or qubits) and the high levels of noise. This project proposes the use of Machine Learning (ML) techniques to extract useful information out of the noisy outputs of quantum computers. By extracting the key features of the noise that disturbs the output, ML algorithms can separate the useful information from the noise. This has two advantages that will be the goals of this project. On one hand, it will enable the use quantum computers despite their noisy nature. On the other, it will allow for the simplification of the quantum applications through approximations, requiring less hardware resources and computational steps. In this way, the project tackles the two problems mentioned above -low number of qubits and high noise levels- to make quantum computing acceleration a reality. Quantum computing holds great potential as an accelerator of computational problems with significant societal impact. Some of these problems are in the fields of healthcare and drug development, finances or cybersecurity to mention a few. Although great progress has been made in recent years to reach practical quantum computation, its true potential cannot be achieved under its current limited number of qubits and high error rates. This work will apply Machine Learning and Statistical Signal Processing concepts to enhance the robustness of quantum computing applications. Robust quantum systems will enable the application of approximate computing approaches to simplify the hardware and software demands of quantum circuits design, pre-processing and simulation. Quantum circuits rely on multiple runs (shots) to find the solution in the final measured state, and produce their outcome in the form of a probability distribution. This unique feature of quantum computers can be turned into a strength. This research is driven by the following research hypothesis: that although approximate quantum computing will alter the measured probability distribution, it will not compromise its correctness if the changes are well understood and applied. The team will explore approximate circuits and software-level approximation to answer the following questions: (i) to what extent alterations to the probability distribution of the measured outcome can be tolerated, and still reach the right outcome in quantum processing; (ii) to what extent quantum approximate computing is able to reduce the quantum hardware requirements and classical pre-processing demands; (iii) in which way approximation techniques affect the probability distribution of the outcome. Therefore, the project has two objectives: The first objective is to enhance the robustness of quantum systems by applying Machine Learning to identify the correct solutions in the system’s outcome. Taking advantage of the enhanced robustness, the second objective is to identify quantum computations that can be approximated, making more efficient use of hardware resources, while still resulting in correct solutions. The final goal of this research it to contribute to the building of robust and hardware efficient quantum acceleration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在药物开发、医疗保健、金融和普通科学等领域的一些计算任务,在传统计算机上花费的时间太长,无法实用,甚至无法使用。由于量子力学的奇怪性质,量子计算可能会将这些过程加速到几分钟甚至几秒钟。然而,量子计算仍处于初级阶段,面临着量子比特(或量子比特)数量非常少和噪声水平很高等障碍。该项目提出使用机器学习(ML)技术从量子计算机的噪声输出中提取有用的信息。通过提取干扰输出的噪声的关键特征,ML算法可以从噪声中分离出有用的信息。这有两个优势,这将是本项目的目标。一方面,它将使量子计算机的使用成为可能,尽管它们具有嘈杂的性质。另一方面,它将允许通过近似简化量子应用,需要更少的硬件资源和计算步骤。通过这种方式,该项目解决了上述两个问题--低量子比特数和高噪声水平--使量子计算加速成为现实。量子计算作为具有重大社会影响的计算问题的加速器具有巨大的潜力。其中一些问题出现在医疗保健和药物开发、金融或网络安全等领域。尽管近年来在实现实际量子计算方面取得了很大进展,但在目前有限的量子比特数和高错误率下,量子计算的真正潜力是无法实现的。这项工作将应用机器学习和统计信号处理的概念来增强量子计算应用的健壮性。健壮的量子系统将使近似计算方法的应用成为可能,从而简化量子电路设计、前处理和模拟的硬件和软件需求。量子电路依靠多次运行(炮击)来找到最终测量状态下的解,并以概率分布的形式产生结果。量子计算机的这一独特功能可以转化为一种力量。这项研究是由以下研究假设驱动的:尽管近似量子计算会改变测量的概率分布,但如果这些变化被很好地理解和应用,它不会损害其正确性。该团队将探索近似电路和软件级别的近似,以回答以下问题:(I)在多大程度上可以容忍测量结果的概率分布的变化,并在量子处理中仍然达到正确的结果;(Ii)量子近似计算在多大程度上能够减少量子硬件需求和经典的预处理需求;(Iii)近似技术以何种方式影响结果的概率分布。因此,该项目有两个目标:第一个目标是通过应用机器学习来确定系统结果中的正确解决方案,以增强量子系统的健壮性。利用增强的健壮性,第二个目标是识别可以近似的量子计算,更有效地利用硬件资源,同时仍然产生正确的解决方案。这项研究的最终目标是为建立强大和硬件高效的量子加速做出贡献。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sonia Lopez Alarcon其他文献

Sonia Lopez Alarcon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

SBIR Phase I: High-Efficiency Liquid Desiccant Regenerator for Desiccant Enhanced Evaporative Air Conditioning
SBIR 第一阶段:用于干燥剂增强蒸发空调的高效液体干燥剂再生器
  • 批准号:
    2335500
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Enhanced Drug Repositioningを用いた肝硬変合併症に対する同時制御治療法の開発
使用增强药物重新定位开发肝硬化并发症同步控制疗法
  • 批准号:
    24K11137
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323984
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Vector light enhanced atomic magnetometry
矢量光增强原子磁力测量
  • 批准号:
    EP/Z000513/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Research Grant
Enhanced Quantum Dot Sources and Optical Atomic Memories for Telecommunication InterConnectivity
用于电信互连的增强型量子点源和光学原子存储器
  • 批准号:
    EP/Z000548/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Research Grant
PAPIER - Plasma Assisted Printing of Metal Inks with Enhanced Resistivity
PAPIER - 具有增强电阻率的金属油墨的等离子辅助印刷
  • 批准号:
    EP/Y001877/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Research Grant
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
  • 批准号:
    2405662
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
STTR Phase I: Microwave-Enhanced Modular Ammonia Synthesis
STTR 第一阶段:微波增强模块化氨合成
  • 批准号:
    2335104
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
22BBSRC-NSF/BIO: A synthetic pyrenoid to guide the engineering of enhanced crops
22BBSRC-NSF/BIO:指导改良作物工程的合成核糖体
  • 批准号:
    BB/Y000323/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Research Grant
Revolutionary Soft Surfboards - Advanced UK low carbon manufacturing for enhanced durability and 100% recyclability
革命性%20Soft%20冲浪板%20-%20Advanced%20UK%20low%20carbon%20制造%20for%20增强%20耐用性%20和%20100%%20可回收性
  • 批准号:
    10095272
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了