PAPIER - Plasma Assisted Printing of Metal Inks with Enhanced Resistivity
PAPIER - 具有增强电阻率的金属油墨的等离子辅助印刷
基本信息
- 批准号:EP/Y001877/1
- 负责人:
- 金额:$ 20.94万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The move toward low-cost flexible electronics is one of the standout advancements of this century: printed electronics are integrated into every part of modern-day life, from light-emitting diodes, to solar cells and printed biosensors such as wearable electronics. However, as we move toward ever-lower processing temperatures in order to enable printing on paper, polymers or even skin, the technology is struggling to catch up. Thermal deposition techniques have their limitations, and the patterning of molten metals is incompatible with affordable flexible materials, including renewable eco-friendly plastics or paper. This mismatch is due, in part, to the high melting point of metals (often over a thousand degrees) which is in stark contrast to the deformation temperature of a range of plastic, paper or fabric materials (considerably lower approx. 100 - 200 degrees Celsius). Techniques currently used in the production of printed electronics are time-consuming and expensive multi step-techniques that require the use of toxic chemicals. These state-of-the-art techniques require metal flakes/particles to be 'melted' together, resulting in contaminants between layers, which reduce overall conductivity of the metal.The atmospheric-pressure and room-temperature printing of metallic coatings from a simple and scalable method is an unmet need of the ever-growing printed electronics market. With a few exceptions, conductive ink materials are dispersions of metallic nanoparticles. Nevertheless, these inks require sintering at temperatures which limits their widespread use (> 50 degrees celcius). In addition, the nanoparticles often clog inkjet printer nozzles upon coating. Metal-organic decomposition (MOD) inks provide an alternative to nanoparticle inks. The development of this technology could have profound benefits for many different scientific fields. This PAPIER project focusses on organometallic compounds, as opposed to nanoparticles, for use in MOD inks in an atmospheric-pressure plasma assisted printing process. The unique and unprecedented combination of MOD inks with plasma assisted printing will enable intricate patterned metallic surfaces to be produced on a large scale and on a range of substrates at atmospheric pressure and room temperature. Exhaustive surface characterizations will allow a deep understanding of mechanisms involved in the printing of MOD inks and promote the elaboration of other new functional metallic thin films.Typically ink formulations are optimized using mass screening and elimination of failures which means that there are no comprehensive studies dedicated to the fundamental chemistry involved. Consequently, there is an urgent need to explore this area further. The ability of the international collaborators at the LIST to avoid using thermal activation is crucial to the success of this project, highlighting the complementary and synergetic expertise of synthetic excellence and plasma deposition. This project aims to improve the performance of existing printing technologies. These would provide a tuneable alternative to the current industrial methods based on silver whose activation temperatures are too high for printing onto many materials.Both aluminium and copper are low cost, earth abundant, and conduct with as much effectiveness as silver. We will use our small molecules in the plasma printing of metals, which will be compatible with modern lower temperature deposition techniques. To reap the benefits of using printing techniques for device fabrication, inks that will transform at room temperatures (affording compatibility with low cost flexible materials) will be produced. This project will create a library of novel highly performing inks from aluminium and copper which can be printed and sintered in air on low cost flexible materials for incorporation into electronic devices.
向低成本柔性电子设备的转变是本世纪的杰出进步:印刷电子设备都集成到现代生活的每个部分中,从发光二极管到太阳能电池和印刷的生物传感器,例如可穿戴电子产品。但是,随着我们朝着较低的加工温度迈进,以便在纸,聚合物甚至皮肤上打印时,该技术正在努力追赶。热沉积技术具有其局限性,熔融金属的模式与负担得起的柔性材料(包括可再生环保塑料或纸张)不相容。这种不匹配的部分原因是金属的高熔点(通常超过一千度)与一系列塑料,纸张或织物材料的变形温度形成鲜明对比(大约100-200度摄氏度)。当前用于印刷电子产品生产的技术是耗时且昂贵的多步进技术,需要使用有毒化学物质。这些最先进的技术需要将金属薄片/颗粒一起“融化”,从而导致层之间的污染物,从而降低了金属的整体电导率。通过简单且可扩展的方法,大气压和金属涂料的室温打印是不满意的生长印刷电子市场的需求。除少数例外,导电材料是金属纳米颗粒的分散体。然而,这些墨水需要在限制其广泛使用的温度下烧结(> 50摄氏度)。此外,纳米颗粒在涂层时通常会堵塞喷墨打印机喷嘴。金属有机分解(MOD)油墨提供了纳米粒子墨水的替代方法。这项技术的发展可能对许多不同的科学领域带来深远的好处。这个纸质项目的重点是有机金属化合物,而不是纳米颗粒,用于在大气压等离子体辅助印刷过程中用于Mod Inks。 Mod Inks与等离子辅助印刷的独特和前所未有的组合将使复杂的图案化金属表面能够在大气压和室温下大规模生产,并在一系列底物上生产。详尽的表面特征将使对印刷墨水印刷的机制有深入的了解,并促进其他新功能的金属薄膜的阐述。使用质量筛选和消除故障的次要墨水配方,这意味着没有专门针对涉及基本化学的全面研究。因此,迫切需要进一步探索该领域。国际合作者避免使用热激活的能力对于该项目的成功至关重要,强调了合成卓越和等离子体沉积的补充和协同专业知识。该项目旨在提高现有印刷技术的性能。这些将为当前的工业方法提供可调的替代品,其激活温度太高而无法在许多材料上打印。铝和铜的成本低,地球丰富,并且具有与银一样有效的行为。我们将在金属的血浆印刷中使用小分子,这将与现代的低温沉积技术兼容。为了获得用于设备制造的印刷技术的好处,将产生将在室温下转换的墨水(可与低成本柔性材料兼容)。该项目将创建一个来自铝和铜的新型高度性能墨水的库,这些油墨可以在低成本的柔性材料上打印和烧结,以将其掺入电子设备中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caroline Knapp其他文献
Caroline Knapp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caroline Knapp', 18)}}的其他基金
Designer Aluminium Precursors for the Inkjet Printing of Electrical Circuits
用于喷墨印刷电路的设计师铝前驱体
- 批准号:
EP/V027611/1 - 财政年份:2021
- 资助金额:
$ 20.94万 - 项目类别:
Research Grant
相似国自然基金
基于物理启发领域泛化的跨装置等离子体破裂预测方法研究
- 批准号:12375219
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
常压空气暖等离子体耦合催化剂固氮研究
- 批准号:52377155
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
船机排温条件下等离子体与催化剂协同的氨分解制氢机制研究
- 批准号:52301382
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分子印迹磁性有序多孔光子晶体微球等离子体3DSERS仿生芯片高通量检测谷物中的多元真菌毒素研究
- 批准号:32372418
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
等离子体刻蚀条件下光刻机用钇基复合陶瓷涂层的失效机制
- 批准号:52371055
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CAREER: From Flamelet to Full-Scale: Advancing Plasma-Assisted Combustion for Low-Emission Sustainable Fuels
职业生涯:从小火焰到全面:推进低排放可持续燃料的等离子体辅助燃烧
- 批准号:
2339518 - 财政年份:2024
- 资助金额:
$ 20.94万 - 项目类别:
Continuing Grant
Multifunctional sustainable adsorbents for water treatment assisted with plasma technologies and for health protection from xenobiotics
多功能可持续吸附剂,用于等离子体技术辅助的水处理和外源性健康保护
- 批准号:
EP/Y037170/1 - 财政年份:2024
- 资助金额:
$ 20.94万 - 项目类别:
Research Grant
Theoretical Investigation and Design of Thermochemical and Plasma-Assisted Etching of Diamond Surfaces
金刚石表面热化学和等离子体辅助蚀刻的理论研究和设计
- 批准号:
23KJ1431 - 财政年份:2023
- 资助金额:
$ 20.94万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Copper Sensing in Uropathogenic Escherichia coli
尿路致病性大肠杆菌中的铜感应
- 批准号:
10604449 - 财政年份:2023
- 资助金额:
$ 20.94万 - 项目类别:
Elucidating High Oral Fluid Exposure Mechanisms of Buprenorphine to Reduce Dental Caries
阐明丁丙诺啡的高口腔液暴露机制以减少龋齿
- 批准号:
10765181 - 财政年份:2023
- 资助金额:
$ 20.94万 - 项目类别: