Understanding and Optimizing Ride-Sourcing Drivers' Learning Dynamics
了解并优化网约车司机的学习动态
基本信息
- 批准号:2300984
- 负责人:
- 金额:$ 49.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will generate behavioral insights and algorithmic tools for ride-sourcing drivers to enable effective driver organization and eventual market efficiency and enhanced societal welfare. It will work with drivers to obtain location and operational data and generate optimized and coordinated guidance on tactical and operational decisions to maximize their welfare. Transportation agencies and local communities could partner with drivers to gain insights into the market and optimize policies to meet societal goals. The independence of ride-sourcing drivers comes at the price of social isolation and anxiety. This project will chart a technology-inspired pathway to better connection and organization of the diffusive workforce, and increase its cohesion, vitality, and social contribution. Ride-sourcing drivers are more likely from the lower income and other vulnerable parts of the population, and the project prototype serves as an outreach tool to improve their well-being, in addition to being a test bed for the research program. The PI will incorporate the research results in her graduate/upper-class undergraduate courses on transportation systems analysis and economics, where traditionally the supplier side of the transportation market is not treated in the same depth as the consumer side. There are three major research objectives: 1) Understand drivers' learning and choice behaviors using dynamic discrete choice models grounded on psychologically sound learning theories; 2) Develop model-based and model-free algorithms to optimize decisions on when to start and end working, where to search for passengers and whether to accept a ride request, scalable to the level of driver participation; 3) Generate behaviorally informed driver guidance synthesizing results from previous two objectives. The project is innovative in three major aspects. First, it provides an alternative approach to enhancing the ride-sourcing market by directly working with drivers instead of platforms as commonly done in the literature and practice. The driver-centered approach is potentially more socially efficient due to the avoidance of a platform's tendency for over-supply and fairer due to its collaborative nature. Secondly, it advances understandings of drivers' learning and choice making dynamics under uncertainty at various temporal scales: routing and order acceptance at the minute-to-minute level, and scheduling at the hour-to-hour level. This integrated approach will fill the knowledge gap of reasons and dynamics behind the low retention rate of ride-sourcing drivers. Thirdly, it contributes to the development of high-performance optimization algorithms for ride-sourcing operations with an emphasis on the scalability to the level of driver participation and data availability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将为网约车司机提供行为洞察和算法工具,以实现有效的司机组织和最终的市场效率,并增强社会福利。它将与司机合作,获取位置和运营数据,并就战术和运营决策生成优化和协调的指导,以最大限度地提高他们的福利。交通机构和当地社区可以与司机合作,洞察市场并优化政策,以满足社会目标。网约车司机的独立性是以社会孤立和焦虑为代价的。该项目将绘制一条由技术启发的道路,以更好地连接和组织分散的劳动力,并增加其凝聚力、活力和社会贡献。网约车司机更有可能来自收入较低的人群和其他弱势群体,该项目原型除了成为研究项目的试验台外,还充当了改善他们福祉的外展工具。这位PI将把研究成果纳入她的研究生/高年级本科生的交通系统分析和经济学课程,在这些课程中,运输市场的供应商方面传统上没有像消费者方面那样得到同样深入的对待。主要的研究目标有三个:1)基于心理健康的学习理论,利用动态离散选择模型来理解驾驶员的学习和选择行为;2)开发基于模型和无模型的算法,以优化关于何时开始和结束工作、在哪里搜索乘客以及是否接受乘车请求的决策,可扩展到驾驶员参与程度;3)根据前两个目标生成行为信息的驾驶员指导综合结果。该项目在三个主要方面具有创新性。首先,它提供了一种通过直接与司机合作来增强网约车市场的替代方法,而不是像文献和实践中通常所做的那样与平台合作。以司机为中心的方法可能更有社会效率,因为它避免了平台供过于求的倾向,并且由于其合作性质而更加公平。其次,提出了驾驶员在不同时间尺度下的学习和选择动态的理解:分钟级的路径和订单接受,小时级的调度。这种整合的方法将填补网约车司机保留率低背后的原因和动态的知识空白。第三,它为开发高性能的乘车外包运营优化算法做出了贡献,重点是可伸缩性到司机参与和数据可用性的水平。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Song Gao其他文献
Gaming the game: Defeating a game captcha with efficient and robust hybrid attacks
玩游戏:通过高效、强大的混合攻击击败游戏验证码
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Song Gao;Manar Mohamed;Nitesh Saxena;Chengcui Zhang - 通讯作者:
Chengcui Zhang
Solvothermal synthesis, crystal structure and magnetic property of a new dinuclear manganese(II)–azido complex: [Mn(2,2′-dpa)(N3)2]2 (2,2′-dpa = 2,2′-dipicolylamine)
新型双核锰(II)-叠氮配合物[Mn(2,2′-dpa)(N3)2]2 (2,2′-dpa = 2,2′-二吡啶胺)的溶剂热合成、晶体结构和磁性)
- DOI:
10.1016/j.ica.2004.09.043 - 发表时间:
2005 - 期刊:
- 影响因子:2.8
- 作者:
Caiming Liu;Song Gao;Deqing Zhang;Zhiliang Liu;Daoben Zhu - 通讯作者:
Daoben Zhu
New tricyanoiron(III) building blocks for the construction of molecule-based magnets
用于构建分子磁体的新型三氰基铁 (III) 构件
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
W. Man;Jing Xiang;Pui;Song Gao;W. Wong;T. Lau - 通讯作者:
T. Lau
Self-microemulsifying drug delivery systems for improving the bioavailability of Huperzine A and lymphatic transport mechanism
提高石杉碱甲生物利用度和淋巴转运机制的自微乳化给药系统
- DOI:
- 发表时间:
- 期刊:
- 影响因子:14.5
- 作者:
Gang Chen;Song Gao;Lei Ye;Jihui Tang - 通讯作者:
Jihui Tang
Critical care transition programs and the risk of readmission or death after discharge from ICU
重症监护过渡计划以及从 ICU 出院后再次入院或死亡的风险
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:38.9
- 作者:
H. Stelfox;J. Bastos;D. Niven;S. Bagshaw;T. Turin;Song Gao - 通讯作者:
Song Gao
Song Gao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Song Gao', 18)}}的其他基金
RAPID: Geospatial Modeling of COVID-19 Spread and Risk Communication by Integrating Human Mobility and Social Media Big Data
RAPID:通过整合人员流动性和社交媒体大数据对 COVID-19 传播和风险沟通进行地理空间建模
- 批准号:
2027375 - 财政年份:2020
- 资助金额:
$ 49.56万 - 项目类别:
Standard Grant
相似海外基金
SBIR Phase I: Optimizing Safety and Fuel Efficiency in Autonomous Rendezvous and Proximity Operations (RPO) of Uncooperative Objects
SBIR 第一阶段:优化不合作物体自主交会和邻近操作 (RPO) 的安全性和燃油效率
- 批准号:
2311379 - 财政年份:2024
- 资助金额:
$ 49.56万 - 项目类别:
Standard Grant
Optimizing Intelligent Vehicular Routing with Edge Computing through Multi-Agent Reinforcement Learning
通过多智能体强化学习利用边缘计算优化智能车辆路由
- 批准号:
24K14913 - 财政年份:2024
- 资助金额:
$ 49.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimizing the STEM Teacher Recruitment, Development and Retention Pathway: Aligning STEM and Teaching Identities
优化 STEM 教师的招聘、发展和保留途径:协调 STEM 和教学身份
- 批准号:
2345197 - 财政年份:2024
- 资助金额:
$ 49.56万 - 项目类别:
Continuing Grant
I-Corps: Translation Potential of Optimizing Regression Testing in Software Development
I-Corps:软件开发中优化回归测试的转化潜力
- 批准号:
2405355 - 财政年份:2024
- 资助金额:
$ 49.56万 - 项目类别:
Standard Grant
CAREER: Characterizing and Optimizing Control in Neural Interfaces
职业:表征和优化神经接口控制
- 批准号:
2338662 - 财政年份:2024
- 资助金额:
$ 49.56万 - 项目类别:
Standard Grant
SBIR Phase I: Optimizing Composition of Novel Molten Alkali Metal Borates for Carbon Dioxide Capture
SBIR 第一阶段:优化用于二氧化碳捕获的新型熔融碱金属硼酸盐的成分
- 批准号:
2332658 - 财政年份:2024
- 资助金额:
$ 49.56万 - 项目类别:
Standard Grant
SCC-PG: Internet of Waste: A Low-Cost Geospatial Sensor Network for Optimizing Solid Waste Management and Fostering Resident's Recycling Effectiveness Through Evidential Education
SCC-PG:废物互联网:通过循证教育优化固体废物管理并提高居民回收效率的低成本地理空间传感器网络
- 批准号:
2341996 - 财政年份:2024
- 资助金额:
$ 49.56万 - 项目类别:
Standard Grant
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
- 批准号:
23K24856 - 财政年份:2024
- 资助金额:
$ 49.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
SCC-PG: Optimizing sociotechnical interventions for healthcare access using community sensing
SCC-PG:利用社区感知优化医疗保健获取的社会技术干预措施
- 批准号:
2334724 - 财政年份:2024
- 资助金额:
$ 49.56万 - 项目类别:
Standard Grant
DMREF: Optimizing Problem formulation for prinTable refractory alloys via Integrated MAterials and processing co-design (OPTIMA)
DMREF:通过集成材料和加工协同设计 (OPTIMA) 优化可打印耐火合金的问题表述
- 批准号:
2323611 - 财政年份:2024
- 资助金额:
$ 49.56万 - 项目类别:
Continuing Grant