Design for Sustainability: How Mental Models of Social-Ecological Systems Shape Engineering Design Decisions

可持续性设计:社会生态系统的心理模型如何影响工程设计决策

基本信息

项目摘要

The work engineers do and the designs they create have long-term, often unforeseen, impacts on people, infrastructure, and the environment. To help ensure that the results of engineering work advance human and environmental well-being, we need to first understand how engineers currently connect their technical work to these broader contexts and systems. To achieve this understanding, this project will integrate cognitive and behavioral science, social theory, and advanced computational methods to connect theories of mental models and planned behavior with engineering design practice. In particular, the project will examine the beliefs and practices of students in civil and chemical engineering programs across the country, two fields that have substantial impacts on the Nation’s infrastructure and environment. The results will enable future researchers and educators to predict how students’ mental models of social and ecological systems will inform their engineering design work. Such predictions in turn will assist educators to more effectively develop students’ ability to account for the broader impacts of their work. In doing so, this project will also help educators better understand how students transfer their learning about design as undergraduates into the practice of design in the workplace. This transition is not yet well-understood but is critically important in shaping engineers’ real-world decisions in light of long-term impacts on society and the environment. This focus on the links between formal education and professional practice will help to identify places in undergraduate courses and programs where educators can assist students to better recognize and understand the impacts of their work and use that understanding to make decisions more likely to lead to positive future impacts. Finally, the project uses advanced analytic approaches such as natural language processing and Bayesian statistics to increase the capacity of educational research in dealing with large-scale qualitative data sets and novel information formats. The project integrates the theory of planned behavior with mental models to build new fundamental knowledge about (1) engineers’ mental models of social-ecological systems (SES), (2) changes in students’ mental models over time, and (3) relationships between mental models and design decisions in both engineering school and engineering work. By leveraging and extending recent advances in natural language processing and Bayesian statistics, the project will test and validate a powerful approach to qualitative data analysis that allows for much larger sample sizes but is currently underused in the field. Senior engineering students in chemical (n=250) and civil (n=250) in capstone courses from a range of universities across the country will be recruited and followed into post-graduation employment. These disciplines are chosen both because of their potential impact on national infrastructure and environments and because prior work has identified potential differences in mental models among these engineering subdisciplines that highlight the need for comparative research. The capstone to work period is the central focus in the study because capstone provides an ideal environment to examine the relationships between mental models of SES and design decisions, but those relationships may change as graduates encounter competing interests, industry norms, and increased complexity in engineering practice. A combination of quantitative and qualitative data will be collected at multiple time points to measure participants’ mental models of SES as well as their design decisions. Identifying and understanding how mental models of these systems inform design decisions as participants transition from formal education into the workforce can inform engineering workforce development and better prepare engineers to design for sustainability and meet emerging sociotechnical and environmental challenges.This project is supported by NSF’s EDU Core Research (ECR) program. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field. Investments are made in critical areas that are essential, broad and enduring: STEM learning and STEM learning environments, broadening participation in STEM, and STEM workforce development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
工程师所做的工作和他们创造的设计对人、基础设施和环境产生长期的、往往是不可预见的影响。为了帮助确保工程工作的成果促进人类和环境的福祉,我们需要首先了解工程师目前如何将他们的技术工作与这些更广泛的背景和系统联系起来。为了实现这一理解,该项目将整合认知和行为科学,社会理论和先进的计算方法,将心理模型和计划行为的理论与工程设计实践联系起来。特别是,该项目将检查学生在全国各地的土木和化学工程项目的信念和做法,对国家的基础设施和环境有重大影响的两个领域。研究结果将使未来的研究人员和教育工作者能够预测学生对社会和生态系统的心理模型将如何影响他们的工程设计工作。这种预测反过来将有助于教育工作者更有效地培养学生的能力,以说明他们的工作的更广泛的影响。在这样做的过程中,这个项目也将帮助教育工作者更好地了解学生如何将他们在本科时对设计的学习转移到工作场所的设计实践中。这种转变尚未得到很好的理解,但对于工程师根据对社会和环境的长期影响来塑造现实世界的决策至关重要。这种对正规教育和专业实践之间联系的关注将有助于确定本科课程和课程中的位置,教育工作者可以帮助学生更好地认识和理解他们的工作的影响,并利用这种理解做出更有可能导致积极的未来影响的决定。最后,该项目使用先进的分析方法,如自然语言处理和贝叶斯统计,以提高教育研究在处理大规模定性数据集和新的信息格式的能力。本项目将计划行为理论与心理模型相结合,构建了关于(1)社会生态系统(SES)的工程师心理模型、(2)学生心理模型随时间的变化、(3)心理模型与工程学校和工程工作中的设计决策之间的关系等新的基础知识。通过利用和扩展自然语言处理和贝叶斯统计学的最新进展,该项目将测试和验证一种强大的定性数据分析方法,该方法允许更大的样本量,但目前在该领域未得到充分利用。来自全国各地大学的化学(n=250)和土木(n=250)顶级课程的高级工程专业学生将被招募并随后进入毕业后就业。选择这些学科是因为它们对国家基础设施和环境的潜在影响,因为先前的工作已经确定了这些工程子学科之间的心理模型的潜在差异,突出了比较研究的必要性。 工作期间的顶点是研究的中心焦点,因为顶点提供了一个理想的环境来检查SES和设计决策的心理模型之间的关系,但这些关系可能会改变毕业生遇到竞争的利益,行业规范,并在工程实践中增加复杂性。将在多个时间点收集定量和定性数据的组合,以衡量参与者的SES心理模型及其设计决策。识别和理解这些系统的心理模型如何为参与者从正规教育过渡到劳动力的设计决策提供信息,可以为工程师队伍的发展提供信息,并更好地为工程师设计可持续性和应对新兴的社会技术和环境挑战做好准备。ECR计划强调基础STEM教育研究,产生该领域的基础知识。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响力审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Katz其他文献

Using Generative Text Models to Create Qualitative Codebooks for Student Evaluations of Teaching
使用生成文本模型创建用于学生教学评估的定性密码本
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Katz;Mitchell Gerhardt;Michelle Soledad
  • 通讯作者:
    Michelle Soledad
Using Sentiment Analysis to Evaluate First-year Engineering Students Teamwork Textual Feedback
使用情感分析来评估一年级工科学生的团队合作文本反馈
Predictors for lymph nodes involvement in low risk endometrial cancer
低风险子宫内膜癌淋巴结受累的预测因子
An Investigation of When and Where Ethics Appears in Undergraduate Engineering Curricula
伦理学何时何地出现在本科工程课程中的调查
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Katz;Umair Shakir
  • 通讯作者:
    Umair Shakir
The correlation between undergraduate student diversity and the representation of women of color faculty in engineering
本科生多样性与工程领域有色人种女性教师代表性之间的相关性
  • DOI:
    10.1002/jee.20361
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Joyce B. Main;Li Tan;M. Cox;E. McGee;Andrew Katz
  • 通讯作者:
    Andrew Katz

Andrew Katz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Katz', 18)}}的其他基金

EAGER: Natural Language Processing for Teaching and Research in Engineering Education
EAGER:用于工程教育教学和研究的自然语言处理
  • 批准号:
    2107008
  • 财政年份:
    2022
  • 资助金额:
    $ 82.64万
  • 项目类别:
    Standard Grant
Research: Faculty Assessment Mental Models in Engineering Education
研究:工程教育中的教师评估心理模型
  • 批准号:
    2113631
  • 财政年份:
    2021
  • 资助金额:
    $ 82.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Research: Intersections between Diversity, Equity, and Inclusion (DEI) and Ethics in Engineering
合作研究:研究:多样性、公平性和包容性 (DEI) 与工程伦理之间的交叉点
  • 批准号:
    2027486
  • 财政年份:
    2021
  • 资助金额:
    $ 82.64万
  • 项目类别:
    Standard Grant

相似国自然基金

相似海外基金

Real Versus Digital: Sustainability optimization for cultural heritage preservation in national libraries
真实与数字:国家图书馆文化遗产保护的可持续性优化
  • 批准号:
    AH/Z000041/1
  • 财政年份:
    2024
  • 资助金额:
    $ 82.64万
  • 项目类别:
    Research Grant
Increasing sustainability at the EPR NRF
提高 EPR NRF 的可持续性
  • 批准号:
    EP/Z530670/1
  • 财政年份:
    2024
  • 资助金额:
    $ 82.64万
  • 项目类别:
    Research Grant
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
  • 批准号:
    EP/Z531133/1
  • 财政年份:
    2024
  • 资助金额:
    $ 82.64万
  • 项目类别:
    Research Grant
Evaluating the effectiveness and sustainability of integrating helminth control with seasonal malaria chemoprevention in West African children
评估西非儿童蠕虫控制与季节性疟疾化学预防相结合的有效性和可持续性
  • 批准号:
    MR/X023133/1
  • 财政年份:
    2024
  • 资助金额:
    $ 82.64万
  • 项目类别:
    Fellowship
NI: DEEPHEAT: Digging deep Earth for heat to promote environmental sustainability
NI:DEEPHEAT:挖掘地球深处的热量以促进环境可持续发展
  • 批准号:
    NE/W004127/2
  • 财政年份:
    2024
  • 资助金额:
    $ 82.64万
  • 项目类别:
    Research Grant
Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
  • 批准号:
    2348641
  • 财政年份:
    2024
  • 资助金额:
    $ 82.64万
  • 项目类别:
    Standard Grant
Competence Greenwashing: The impact of ESG skills misrepresentation on corporate sustainability performance
能力“漂绿”:ESG 技能的误传对企业可持续发展绩效的影响
  • 批准号:
    24K16445
  • 财政年份:
    2024
  • 资助金额:
    $ 82.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exploration of relationship between floods, poverty, and dynamic environmental sustainability
探索洪水、贫困和动态环境可持续性之间的关系
  • 批准号:
    24K07692
  • 财政年份:
    2024
  • 资助金额:
    $ 82.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Engaging the over 50s to ensure the sustainability of our blood supply
让 50 多岁的人参与进来,确保我们血液供应的可持续性
  • 批准号:
    LP220200819
  • 财政年份:
    2024
  • 资助金额:
    $ 82.64万
  • 项目类别:
    Linkage Projects
MAPS - Models, Assessment, and Policies for Sustainability
MAPS - 可持续发展模型、评估和政策
  • 批准号:
    10108808
  • 财政年份:
    2024
  • 资助金额:
    $ 82.64万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了