CAREER: Combining Human Judgment and Data-Driven Approaches for the Development of Interpretable Models of Student Behaviors: Applications to Computer Science Education

职业:结合人类判断和数据驱动的方法来开发可解释的学生行为模型:在计算机科学教育中的应用

基本信息

  • 批准号:
    1942962
  • 负责人:
  • 金额:
    $ 69.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Debugging, the process of identifying and resolving defects in computer programs, is an important skill to acquire while learning to program. However, many novice programmers, with good understanding of programming, struggle with the debugging process. Despite this, debugging is rarely explicitly taught. This project will use data-driven approaches to study the debugging processes of novice programmers enrolled in a college level introductory computer science course, identify the meaningful elements of their debugging behaviors and how those elements combine to form common debugging strategies. This knowledge will be used to create computer algorithms that are able to identify which debugging strategies students use when programming. These algorithms will be designed to be interpretable by students and instructors. These algorithms will be used to support students in learning efficient debugging strategies, assist instructors in monitoring their students' debugging practices, and help future K-12 teachers in learning about the meaningful elements of the debugging process. The results of this project will positively impact the state of computer science education in both college level introductory computer science courses and in the K-12 level by supporting future teachers in learning how to foster important debugging skills.The project will contribute to the state of the art in student behavior modeling by formalizing an approach that combines knowledge engineering and machine learning to create interpretable models of student behavior. It will provide empirical evidence illustrating how the interpretability of a student behavior model can provide powerful pedagogical advantages beyond its accuracy at predicting a student's behavior. The proposed approach will be applied to study debugging strategies in college level introductory computer science courses through the log data collected from an online problem-solving platform named PrairieLearn. The benefits of interpretable models will be compared to those of traditional machine learning approaches, using rigorous research to identify the best methods for supporting students and instructors. Specifically, the project will apply this approach, leveraging the increased interpretability of the models it creates, to: (1) better understand students' debugging behaviors; (2) support students in self-reflecting about their debugging strategies and developing efficient debugging practices; (3) provide instructors with actionable information about their students' debugging processes; and (4) support future teachers in acquiring expertise in formulating hypotheses about students' debugging strategies. By doing so, the project will contribute to general knowledge about debugging processes for novice programmers, and establish methods to support college students and future K-12 teachers in acquiring explicit knowledge about the debugging process.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
识别和解决计算机程序中的缺陷的过程,是学习编程时要掌握的一项重要技能。然而,许多新手程序员,具有良好的编程理解,挣扎与调试过程。尽管如此,调试很少被明确地教导。本计画将使用资料驱动的方法来研究在大学计算机科学入门课程中注册的新手程式设计师的除错过程,找出他们除错行为中有意义的元素,以及这些元素如何联合收割机形成共同的除错策略。这些知识将用于创建计算机算法,这些算法能够识别学生在编程时使用的调试策略。这些算法将被设计成可由学生和教师解释。这些算法将用于支持学生学习有效的调试策略,协助教师监控学生的调试实践,并帮助未来的K-12教师学习调试过程中有意义的元素。该项目的结果将积极影响计算机科学教育在大学水平的计算机科学入门课程和在K-通过支持未来的教师学习如何培养重要的调试技能,该项目将通过形式化结合知识工程和机器学习的方法来创建可解释的学生行为模型,从而促进学生行为建模的最新发展。行为它将提供实证证据,说明学生行为模型的可解释性如何提供强大的教学优势,而不仅仅是预测学生行为的准确性。所提出的方法将适用于研究调试策略,在大学水平的计算机科学入门课程,通过日志数据收集的在线解决问题的平台名为PrairieLearn。可解释模型的好处将与传统机器学习方法的好处进行比较,使用严格的研究来确定支持学生和教师的最佳方法。具体来说,该项目将应用这种方法,利用它创建的模型的可解释性,以:(1)更好地理解学生的调试行为;(2)支持学生自我反思他们的调试策略并开发有效的调试实践;(3)为教师提供有关学生调试过程的可操作信息;(4)为学生提供调试过程的信息。以及(4)支持未来的教师获得关于学生调试策略的假设的专业知识。通过这样做,该项目将有助于新手程序员的调试过程的一般知识,并建立方法,以支持大学生和未来的K-12教师在获得明确的知识调试过程。这个奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using submission log data to investigate novice programmers’ employment of debugging strategies
使用提交日志数据调查新手程序员调试策略的使用
  • DOI:
    10.1145/3576050.3576094
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu, Qianhui;Paquette, Luc
  • 通讯作者:
    Paquette, Luc
Combining latent profile analysis and programming traces to understand novices’ differences in debugging
结合潜在的配置文件分析和编程跟踪来了解新手在调试中的差异
  • DOI:
    10.1007/s10639-022-11343-7
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Zhang, Yingbin;Paquette, Luc;Pinto, Juan D.;Liu, Qianhui;Fan, Aysa Xuemo
  • 通讯作者:
    Fan, Aysa Xuemo
Investigating the reliability of aggregate measurements of learning process data: From theory to practice
  • DOI:
    10.1111/jcal.12951
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingbin Zhang;Yafei Ye;Luc Paquette;Yibo Wang;Xiaoyong Hu
  • 通讯作者:
    Yingbin Zhang;Yafei Ye;Luc Paquette;Yibo Wang;Xiaoyong Hu
Investigating the Relationship Between Programming Experience and Debugging Behaviors in an Introductory Computer Science Course
在计算机科学入门课程中调查编程经验与调试行为之间的关系
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pinto, Juan D.;Liu, Qianhui;Paquette, Luc;Zhang, Yingbin;Fan, Aysa X.
  • 通讯作者:
    Fan, Aysa X.
Utilizing programming traces to explore and model the dimensions of novices' code‐writing skill
利用编程痕迹探索和建模新手代码维度——写作能力
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luc Paquette其他文献

Investigating SMART Models of Self-Regulation and their Impact on Learning
研究自我调节的 SMART 模型及其对学习的影响
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stephen Hutt;Jaclyn L. Ocumpaugh;J. M. Alexandra;L. Andres;Nigel Bosch;Luc Paquette;Gautam Biswas;Ryan S. Baker
  • 通讯作者:
    Ryan S. Baker
Interpretable neural networks vs. expert-defined models for learner behavior detection
可解释的神经网络与专家定义的学习者行为检测模型
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Juan D. Pinto;Luc Paquette;Nigel Bosch
  • 通讯作者:
    Nigel Bosch
Towards a Unified Framework for Evaluating Explanations
建立一个评估解释的统一框架
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Juan D. Pinto;Luc Paquette
  • 通讯作者:
    Luc Paquette
Detector-driven classroom interviewing: focusing qualitative researcher time by selecting cases in situ
探测器驱动的课堂访谈:通过现场选择案例来集中定性研究人员的时间
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryan S. Baker;Stephen Hutt;Nigel Bosch;Jaclyn L. Ocumpaugh;Gautam Biswas;Luc Paquette;J. M. A. Andres;Nidhi Nasiar;Anabil Munshi
  • 通讯作者:
    Anabil Munshi

Luc Paquette的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luc Paquette', 18)}}的其他基金

Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
  • 批准号:
    2301172
  • 财政年份:
    2023
  • 资助金额:
    $ 69.59万
  • 项目类别:
    Continuing Grant

相似海外基金

Combining structural biology and genetics to understand the function of a multi-gene family expanded in neglected human malaria parasites
结合结构生物学和遗传学来了解在被忽视的人类疟疾寄生虫中扩展的多基因家族的功能
  • 批准号:
    MR/Y012895/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.59万
  • 项目类别:
    Research Grant
Combining noninvasive brain stimulation and neuroimaging to study human brain biology
结合无创脑刺激和神经影像学研究人脑生物学
  • 批准号:
    RGPIN-2019-06514
  • 财政年份:
    2022
  • 资助金额:
    $ 69.59万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring mixed-reality immersive performance making by combining theatre devising and human-computer interaction methods.
结合剧场设计与人机交互方式,探索混合现实沉浸式表演制作。
  • 批准号:
    2748305
  • 财政年份:
    2022
  • 资助金额:
    $ 69.59万
  • 项目类别:
    Studentship
Combining noninvasive brain stimulation and neuroimaging to study human brain biology
结合无创脑刺激和神经影像学研究人脑生物学
  • 批准号:
    RGPIN-2019-06514
  • 财政年份:
    2021
  • 资助金额:
    $ 69.59万
  • 项目类别:
    Discovery Grants Program - Individual
Combining a fully synthetic hydrogel with human intestinal organoids to model pathological matrix remodelling in Inflammatory Bowel Disease (IBD)
将全合成水凝胶与人体肠道类器官相结合,模拟炎症性肠病(IBD)的病理基质重塑
  • 批准号:
    NC/V001469/1
  • 财政年份:
    2021
  • 资助金额:
    $ 69.59万
  • 项目类别:
    Training Grant
FW-HTF-P: Combining Human and Machine Intelligence to Improve Equity and Fairness in the Work of Municipal, Public Sector Decision Making
FW-HTF-P:结合人类和机器智能,提高市政、公共部门决策工作的公平性和公平性
  • 批准号:
    2129038
  • 财政年份:
    2021
  • 资助金额:
    $ 69.59万
  • 项目类别:
    Standard Grant
Towards comprehensive myelin assessment: combining multi-contrast quantitative MRI with spatially resolved lipodomics in the human brain
迈向全面的髓磷脂评估:将多对比定量 MRI 与人脑空间分辨脂质组学相结合
  • 批准号:
    446291874
  • 财政年份:
    2020
  • 资助金额:
    $ 69.59万
  • 项目类别:
    Research Grants
Combining experiments of man and nature to target human insulin resistance
结合人与自然的实验来针对人类胰岛素抵抗
  • 批准号:
    10316203
  • 财政年份:
    2020
  • 资助金额:
    $ 69.59万
  • 项目类别:
Combining experiments of man and nature to target human insulin resistance
结合人与自然的实验来针对人类胰岛素抵抗
  • 批准号:
    10534157
  • 财政年份:
    2020
  • 资助金额:
    $ 69.59万
  • 项目类别:
The Possibility of Combining Human Rights Theory and Scientific Knowledge Theory in Establishing Legal Rules for Medical Intervention-genome editing-for human embryos.
人权理论与科学知识理论相结合建立人类胚胎医学干预基因组编辑法律规则的可能性。
  • 批准号:
    20K20745
  • 财政年份:
    2020
  • 资助金额:
    $ 69.59万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了