Collaborative Research: Multiparameter Topological Data Analysis

合作研究:多参数拓扑数据分析

基本信息

  • 批准号:
    2301360
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Complex datasets arise in many disciplines of science and engineering and their interpretation requires Multiparameter Data Analysis, which broadly speaking, studies the dependency of a phenomenon or a space on multiple parameters. For instance, in climate simulations, scientists are interested in identifying, verifying, and evaluating trends in detecting, tracking, and characterizing weather patterns associated with high impact weather events such as thunderstorms and hurricanes. In recent years, topological data analysis (TDA) has evolved as an emerging area in data science. So far, most of its applications have been limited to the single parameter case, that is, to data expressing the behavior of a single variable. As its reach to applications expands, the task of extracting intelligent summaries out of diverse, complex data demands the study of multiparameter dependencies. This project will help address this demand by developing a sound mathematical theory supported by efficient algorithmic tools thus providing a powerful platform for data exploration and analysis in scientific and engineering applications. The educational impact will be accelerated by the synergy between mathematics and computer science and integrated applications. Graduate students supported by the project will be trained to develop skills in mathematics and theoretical computer science, most notably in algorithms and topology, and analyze some real-world data sets. The investigators will follow best practice to recruit and mentor students from underrepresented groups who will participate in the project. The investigators also plan to broaden research engagement via workshops or tutorials at computational topology and TDA venues.Although TDA involving a single parameter has been well researched and developed, the same is not yet true for the multiparameter case. At its current nascent stage, multiparameter TDA is yet to develop tools to practically handle complex, diverse, and high-dimensional data. To meet this challenge, this project will make both mathematical and algorithmic advances for multiparameter TDA. To scope effectively, focus will be mainly on three research thrusts to: (I) explore multiparameter persistence for generalized features and develop algorithms to compute them; (II) exploit the connections of zigzag persistence to multiparameter settings to support dynamic data analysis, and (III) generalize graphical topological descriptors. From a methodological point of view, the geometric and topological ideas behind the proposed work inject novel perspectives and directions to the important field of computational data analysis. In particular, the project team will investigate several novel mathematical concepts in conjunction with algorithms to address various challenges appearing in the aforementioned thrusts. The resulting TDA methodologies have the potential to complement and augment traditional data analysis approaches in fields such as machine learning and statistical data analysis. The investigators bring together expertise in theoretical computer science, algorithms design, mathematics, and in particular topological data analysis to conduct this research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
复杂数据集出现在科学和工程的许多学科中,它们的解释需要多参数数据分析,广义上说,研究现象或空间对多个参数的依赖性。例如,在气候模拟中,科学家们对识别、验证和评估与雷暴和飓风等高影响天气事件相关的天气模式的检测、跟踪和特征化趋势感兴趣。近年来,拓扑数据分析(TDA)已经发展成为数据科学中的一个新兴领域。到目前为止,它的大部分应用都局限于单参数的情况下,也就是说,一个变量的行为表示的数据。随着其应用范围的扩大,从各种复杂数据中提取智能摘要的任务需要研究多参数依赖关系。该项目将通过开发由高效算法工具支持的合理数学理论来帮助解决这一需求,从而为科学和工程应用中的数据探索和分析提供强大的平台。数学和计算机科学以及综合应用之间的协同作用将加速教育影响。该项目支持的研究生将接受培训,以发展数学和理论计算机科学方面的技能,最主要的是算法和拓扑学,并分析一些真实世界的数据集。调查人员将遵循最佳做法,从参与该项目的代表性不足的群体中招募和指导学生。研究人员还计划通过在计算拓扑学和TDA场所举办研讨会或教程来扩大研究参与。尽管涉及单参数的TDA已经得到了很好的研究和开发,但对于多参数情况来说还不是这样。在目前的新生阶段,多参数TDA尚未开发出实际处理复杂,多样和高维数据的工具。为了迎接这一挑战,该项目将使数学和算法的进步,多参数TDA。为了有效地范围,重点将主要放在三个研究方向:(一)探索广义特征的多参数持久性,并开发计算它们的算法;(二)利用锯齿持久性与多参数设置的连接来支持动态数据分析,以及(三)广义图形拓扑描述符。从方法论的角度来看,所提出的工作背后的几何和拓扑思想注入新的观点和方向的重要领域的计算数据分析。特别是,项目团队将研究几个新的数学概念,并结合算法来解决上述推力中出现的各种挑战。由此产生的TDA方法有可能补充和增强机器学习和统计数据分析等领域的传统数据分析方法。研究人员汇集了理论计算机科学、算法设计、数学,特别是拓扑数据分析方面的专业知识来进行这项研究。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tamal Dey其他文献

Predicting the optimum harvesting dates for different exotic apple varieties grown under North Western Himalayan regions through acoustic and machine vision techniques.
  • DOI:
    10.1016/j.fochx.2023.100754
  • 发表时间:
    2023-10-30
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Nazrana Rafique Wani;Syed Zameer Hussain;Gopinath Bej;Bazila Naseer;Mushtaq Beigh;Ufaq Fayaz;Tamal Dey;Abhra Pal;Amitava Akuli;Alokesh Ghosh;B.S. Dhekale;Fehim J. Wani
  • 通讯作者:
    Fehim J. Wani
Emergence of an unconventional Enterobacter cloacae-derived Iturin A C-15 as a potential therapeutic agent against methicillin-resistant Staphylococcus aureus
  • DOI:
    10.1007/s00203-024-04226-7
  • 发表时间:
    2024-12-30
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Dipro Mukherjee;Samya Sen;Aniket Jana;Surojit Ghosh;Moumita Jash;Monika Singh;Satyajit Ghosh;Nabanita Mukherjee;Rajsekhar Roy;Tamal Dey;Shankar Manoharan;Surajit Ghosh;Jayita Sarkar
  • 通讯作者:
    Jayita Sarkar

Tamal Dey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tamal Dey', 18)}}的其他基金

AF: Small: Expanding the Reach of Topological Data Analysis
AF:小:扩大拓扑数据分析的范围
  • 批准号:
    2049010
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
AF: Small: Expanding the Reach of Topological Data Analysis
AF:小:扩大拓扑数据分析的范围
  • 批准号:
    2007961
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
AF: Small: Topological Data Analysis for Big and High Dimensional Data
AF:小:大维和高维数据的拓扑数据分析
  • 批准号:
    1318595
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Optimality in Homology - Algorithms and Applications
AF:媒介:协作研究:同调中的最优性 - 算法和应用
  • 批准号:
    1064416
  • 财政年份:
    2011
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
AF: Small: Analyzing Spaces and Scalar Fields via Point Clouds
AF:小:通过点云分析空间和标量场
  • 批准号:
    1116258
  • 财政年份:
    2011
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
MCS: Reconstructing and Inferring Topology and Geometry from Point Cloud Data
MCS:从点云数据重建和推断拓扑和几何形状
  • 批准号:
    0915996
  • 财政年份:
    2009
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Inferring Topology and Geometry for Dynamic Shapes
推断动态形状的拓扑和几何形状
  • 批准号:
    0830467
  • 财政年份:
    2008
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-smoothness in Meshing and Reconstruction
协作研究:网格划分和重构中的非平滑性
  • 批准号:
    0635008
  • 财政年份:
    2006
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Implementation-friendly Geometric Algorithms for Provable Surface and Volume Meshing
用于可证明表面和体积网格划分的易于实施的几何算法
  • 批准号:
    0430735
  • 财政年份:
    2004
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Postdoctoral: Sampling Based Geometric Modeling
博士后:基于采样的几何建模
  • 批准号:
    0102280
  • 财政年份:
    2001
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Multiparameter Topological Data Analysis
合作研究:多参数拓扑数据分析
  • 批准号:
    2301361
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Multiparameter Topological Data Analysis
合作研究:多参数拓扑数据分析
  • 批准号:
    2301359
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Detection and Estimation of Multi-Scale Complex Spatiotemporal Processes in Tornadic Supercells from High Resolution Simulations and Multiparameter Radar
合作研究:通过高分辨率模拟和多参数雷达检测和估计龙卷超级单体中的多尺度复杂时空过程
  • 批准号:
    2114860
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Detection and Estimation of Multi-Scale Complex Spatiotemporal Processes in Tornadic Supercells from High Resolution Simulations and Multiparameter Radar
合作研究:通过高分辨率模拟和多参数雷达检测和估计龙卷超级单体中的多尺度复杂时空过程
  • 批准号:
    2114817
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Detection and Estimation of Multi-Scale Complex Spatiotemporal Processes in Tornadic Supercells from High Resolution Simulations and Multiparameter Radar
合作研究:通过高分辨率模拟和多参数雷达检测和估计龙卷超级单体中的多尺度复杂时空过程
  • 批准号:
    2114757
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Studies of the Microphysical Processes in Ice and Mixed-Phase Clouds and Precipitation Using Multiparameter Radar Observations Combined with Cloud Modeling
合作研究:利用多参数雷达观测结合云模拟研究冰、混相云和降水的微物理过程
  • 批准号:
    1841260
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Studies of the Microphysical Processes in Ice and Mixed-Phase Clouds and Precipitation Using Multiparameter Radar Observations Combined with Cloud Modeling
合作研究:利用多参数雷达观测结合云模拟研究冰、混相云和降水的微物理过程
  • 批准号:
    1841215
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Studies of the Microphysical Processes in Ice and Mixed-Phase Clouds and Precipitation Using Multiparameter Radar Observations Combined with Cloud Modeling
合作研究:利用多参数雷达观测结合云模拟研究冰、混相云和降水的微物理过程
  • 批准号:
    1841246
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Computing Dynamics of Multiparameter Systems
合作研究:多参数系统的计算动力学
  • 批准号:
    0914995
  • 财政年份:
    2009
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
COLLABORATIVE RESEARCH-- MULTIPARAMETER FLOW CYTOMETRY
合作研究——多参数流式细胞术
  • 批准号:
    3744082
  • 财政年份:
  • 资助金额:
    $ 20万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了