Inferring Topology and Geometry for Dynamic Shapes
推断动态形状的拓扑和几何形状
基本信息
- 批准号:0830467
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: CCF- 0830467Institution: Ohio State UniversityPI: Dey, TamalTitle: Inferring Topology and Geometry for Dynamic ShapesABSTRACTMany applications in science and engineering deal with three dimensional shapes that move, deform, and/or evolve with time. These applications need computational methods to simulate such shapes in motion for visualization, inspection, prototyping, and further developments. We propose to focus on the problem of inferring topology and geometry of a dynamic shape from an appropriate representation. We argue that the user can be given a choice of maintaining a data structure of appropriate complexity depending on the goal of the simulation. A lighter data structure can be used if the goal is to capture only topology whereas a more complex data structure can be chosen for capturing both geometry and topology. This view point generates a plethora of mathematical and algorithmic questions that we propose to investigate in this project. Topology and geometry inference of shapes in motion with theoretical guarantee is a difficult but important problem. A key challenge is to keep the update costs for the maintained data structures low. Recent developments in topological analysis of different types of complexes in the context of surface reconstruction and data analysis have opened up the possibility of representing a shape at different levels of complexity depending on the need. An efficient use of these representations in a kinetic setting is
提案:CCF-0830467机构:俄亥俄州州立大学PI:Dey,Tamal题目:推断动态形状的拓扑和几何摘要在科学和工程中的许多应用涉及随着时间移动、变形和/或演化的三维形状。这些应用需要计算方法来模拟运动中的这些形状,以进行可视化,检查,原型设计和进一步开发。 我们建议把重点放在从一个适当的表示推理的动态形状的拓扑结构和几何形状的问题。我们认为,用户可以选择维护一个适当的复杂性的数据结构,这取决于模拟的目标。如果目标是仅捕获拓扑,则可以使用更轻的数据结构,而可以选择更复杂的数据结构来捕获几何和拓扑。这个观点产生了大量的数学和算法问题,我们建议在这个项目中进行调查。运动物体的拓扑和几何推理是一个有理论保证的困难而重要的问题。一个关键的挑战是保持维护数据结构的更新成本较低。最近的事态发展,在拓扑分析的不同类型的复杂的表面重建和数据分析的背景下,开辟了可能性,表示形状在不同层次的复杂性取决于需要。在动态环境中有效使用这些表示是
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tamal Dey其他文献
Predicting the optimum harvesting dates for different exotic apple varieties grown under North Western Himalayan regions through acoustic and machine vision techniques.
- DOI:
10.1016/j.fochx.2023.100754 - 发表时间:
2023-10-30 - 期刊:
- 影响因子:6.1
- 作者:
Nazrana Rafique Wani;Syed Zameer Hussain;Gopinath Bej;Bazila Naseer;Mushtaq Beigh;Ufaq Fayaz;Tamal Dey;Abhra Pal;Amitava Akuli;Alokesh Ghosh;B.S. Dhekale;Fehim J. Wani - 通讯作者:
Fehim J. Wani
Emergence of an unconventional Enterobacter cloacae-derived Iturin A C-15 as a potential therapeutic agent against methicillin-resistant Staphylococcus aureus
- DOI:
10.1007/s00203-024-04226-7 - 发表时间:
2024-12-30 - 期刊:
- 影响因子:2.600
- 作者:
Dipro Mukherjee;Samya Sen;Aniket Jana;Surojit Ghosh;Moumita Jash;Monika Singh;Satyajit Ghosh;Nabanita Mukherjee;Rajsekhar Roy;Tamal Dey;Shankar Manoharan;Surajit Ghosh;Jayita Sarkar - 通讯作者:
Jayita Sarkar
Tamal Dey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tamal Dey', 18)}}的其他基金
Collaborative Research: Multiparameter Topological Data Analysis
合作研究:多参数拓扑数据分析
- 批准号:
2301360 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
AF: Small: Expanding the Reach of Topological Data Analysis
AF:小:扩大拓扑数据分析的范围
- 批准号:
2049010 - 财政年份:2020
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
AF: Small: Expanding the Reach of Topological Data Analysis
AF:小:扩大拓扑数据分析的范围
- 批准号:
2007961 - 财政年份:2020
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
AF: Small: Topological Data Analysis for Big and High Dimensional Data
AF:小:大维和高维数据的拓扑数据分析
- 批准号:
1318595 - 财政年份:2013
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Optimality in Homology - Algorithms and Applications
AF:媒介:协作研究:同调中的最优性 - 算法和应用
- 批准号:
1064416 - 财政年份:2011
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
AF: Small: Analyzing Spaces and Scalar Fields via Point Clouds
AF:小:通过点云分析空间和标量场
- 批准号:
1116258 - 财政年份:2011
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
MCS: Reconstructing and Inferring Topology and Geometry from Point Cloud Data
MCS:从点云数据重建和推断拓扑和几何形状
- 批准号:
0915996 - 财政年份:2009
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: Non-smoothness in Meshing and Reconstruction
协作研究:网格划分和重构中的非平滑性
- 批准号:
0635008 - 财政年份:2006
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Implementation-friendly Geometric Algorithms for Provable Surface and Volume Meshing
用于可证明表面和体积网格划分的易于实施的几何算法
- 批准号:
0430735 - 财政年份:2004
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Postdoctoral: Sampling Based Geometric Modeling
博士后:基于采样的几何建模
- 批准号:
0102280 - 财政年份:2001
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: The 2024 Graduate Student Topology and Geometry Conference
会议:2024年研究生拓扑与几何会议
- 批准号:
2348932 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
- 批准号:
2338933 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Computational topology and geometry for systems biology
系统生物学的计算拓扑和几何
- 批准号:
EP/Z531224/1 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Research Grant
Conference: Richmond Geometry Meeting: Geometric Topology and Moduli
会议:里士满几何会议:几何拓扑和模数
- 批准号:
2349810 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Interactions between geometry, topology, number theory, and dynamics
几何、拓扑、数论和动力学之间的相互作用
- 批准号:
2303572 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Geometry and topology of surfaces and graphs
曲面和图形的几何和拓扑
- 批准号:
2304920 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2314082 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant