Collaborative Research: FW-HTF-R: Future of Construction Workplace Health Monitoring
合作研究:FW-HTF-R:建筑工作场所健康监测的未来
基本信息
- 批准号:2301601
- 负责人:
- 金额:$ 27.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Given the disproportionate rate of fatalities and injuries in the construction industry and the potential of ambiguous health and hazardous situations with respect to the impending technological revolution and climate change, it is crucial to improve the health and safety of the future workforce. However, there is a lack of an effective, objective, and continuous approach for assessing construction workers' health status at jobsites. Although there have been important innovations in wearable physiological sensing technologies and artificial intelligence for objective assessment of construction workers' health parameters, there remain fundamental challenges for establishing a worker-centered holistic health monitoring approach with promising preventive potentials. These challenges stem from: a) lack of a scalable and feasible wearable sensor for continuous elicitation of workers' diverse bodily responses to stressors in the field; b) lack of a robust interpretive data-driven framework to process the elicited signals for automatic early detection of physical fatigue, mental stress, and exposure to heat stress; and c) lack of effective representation of health and safety information to workers and managers for enabling improved task decisions by augmenting their situational awareness. By establishing a real-time and context-aware holistic health monitoring approach, this project will play a fundamental role in improving the safety of close to 7 million workers in the U.S. construction sector. The developed intelligent health monitoring system is expected to produce changes in the quality of work and workforce policies, resulting in reduced conflicts and enhanced quality of life. It can also be used to address workplace health issues in other hazardous industries such as manufacturing, firefighting, and agriculture.The overarching goal of this research is to improve construction workforce health and safety by integrating multi-disciplinary research in flexible, wearable sensor fabrication, artificial intelligence, and privacy-aware information visualization to provide near-real-time and projected future context-aware health and safety information to workers and managers for enabling improved task decisions by augmenting their situational awareness. The intellectual significance of this project lies in fulfilling the goal by generating and expanding new knowledge on three fronts. First, the project will design and fabricate a flexible wearable sensor for continuous and noninvasive measurement of workers' bioelectric signals and electrochemical responses at construction sites. The use of a single, flexible wearable sensing device instead of multiple off-the-shelf sensors will facilitate the scalability and feasibility of the proposed health sensing system in the construction workplace. Second, the project will develop robust machine learning algorithms and frameworks for continuous and objective assessment of workers' health conditions in the field based on physiological, contextual, and environmental data. For this purpose, this project will address fundamental challenges related to traditional machine learning algorithms by developing a novel interpretive data-driven approach robust to inter- and intra-individual variability while ensuring data security and privacy. Third, this research will generate a digital twin model (health and safety maps) of the construction sites through an array of collective health analyses and develop an automated feedback module for providing personal health-related information and corresponding mitigation strategies to field workers. The insights into the collective health and safety information can profoundly assist the workers and safety managers in making a sound, far-sighted decision about the execution of field-oriented construction operations in near real-time. This research effort will open new doors in improving proactive health and safety management in the field through collective visualization of workers' real-time health and safety information.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
鉴于建筑行业的死亡率和伤亡率过高,以及即将到来的技术革命和气候变化可能造成不明确的健康和危险情况,改善未来劳动力的健康和安全至关重要。然而,缺乏有效、客观和持续的方法来评估工地建筑工人的健康状况。尽管可穿戴生理传感技术和人工智能在建筑工人健康参数客观评估方面取得了重要创新,但建立以工人为中心的整体健康监测方法仍然存在根本性挑战,这种方法具有良好的预防潜力。这些挑战源于:a)缺乏一种可扩展的、可行的可穿戴传感器,用于连续获取工人对现场压力源的各种身体反应;B)缺乏一个强大的解释性数据驱动框架来处理引发的信号,以自动早期检测身体疲劳、精神压力和暴露于热应激;c)缺乏有效地向工人和管理人员提供健康和安全信息,从而通过增强他们的情景意识来改进任务决策。通过建立实时和情境感知的整体健康监测方法,该项目将在改善美国建筑业近700万工人的安全方面发挥重要作用。发达的智能健康监测系统有望在工作质量和劳动力政策方面产生变化,从而减少冲突,提高生活质量。它还可用于解决制造业、消防和农业等其他危险行业的工作场所健康问题。本研究的总体目标是通过整合柔性、可穿戴传感器制造、人工智能和隐私感知信息可视化等多学科研究来改善建筑工人的健康和安全,为工人和管理人员提供近实时和预测的未来环境感知健康和安全信息,从而通过增强他们的态势感知来改进任务决策。该项目的智力意义在于通过在三个方面产生和扩展新知识来实现目标。首先,该项目将设计和制造一种柔性可穿戴传感器,用于在建筑工地连续、无创地测量工人的生物电信号和电化学反应。使用单一、灵活的可穿戴传感设备代替多个现成的传感器,将有助于拟议的健康传感系统在建筑工作场所的可扩展性和可行性。其次,该项目将开发强大的机器学习算法和框架,以便根据生理、背景和环境数据,对现场工人的健康状况进行持续和客观的评估。为此,该项目将通过开发一种新的解释性数据驱动方法来解决与传统机器学习算法相关的基本挑战,该方法在确保数据安全和隐私的同时,对个体之间和个体内部的可变性具有鲁棒性。第三,本研究将通过一系列集体健康分析生成建筑工地的数字孪生模型(健康和安全地图),并开发一个自动反馈模块,为现场工作人员提供个人健康相关信息和相应的缓解策略。对集体健康和安全信息的洞察可以深刻地帮助工人和安全管理人员在近乎实时的情况下,对现场施工作业的执行做出合理、有远见的决策。这项研究工作将通过对工人实时健康和安全信息的集体可视化,为改善该领域的主动健康和安全管理打开新的大门。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Counterfactual Fairness in Synthetic Data Generation
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Mahed Abroshan;Mohammad Mahdi Khalili;†. AndrewElliott
- 通讯作者:Mahed Abroshan;Mohammad Mahdi Khalili;†. AndrewElliott
Symbolic Metamodels for Interpreting Black-Boxes Using Primitive Functions
使用原语函数解释黑盒的符号元模型
- DOI:10.1609/aaai.v37i6.25816
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Abroshan, Mahed;Mishra, Saumitra;Khalili, Mohammad Mahdi
- 通讯作者:Khalili, Mohammad Mahdi
Loss Balancing for Fair Supervised Learning
- DOI:10.48550/arxiv.2311.03714
- 发表时间:2023-11
- 期刊:
- 影响因子:0
- 作者:Mohammad Mahdi Khalili;Xueru Zhang;Mahed Abroshan
- 通讯作者:Mohammad Mahdi Khalili;Xueru Zhang;Mahed Abroshan
Towards Fair Representation Learning in Knowledge Graph with Stable Adversarial Debiasing
- DOI:10.1109/icdmw58026.2022.00119
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Yihe Wang;Mohammad Mahdi Khalili;X. Zhang
- 通讯作者:Yihe Wang;Mohammad Mahdi Khalili;X. Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohammadmahdi Khaliligarekani其他文献
Mohammadmahdi Khaliligarekani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohammadmahdi Khaliligarekani', 18)}}的其他基金
Collaborative Research: FW-HTF-R: Future of Construction Workplace Health Monitoring
合作研究:FW-HTF-R:建筑工作场所健康监测的未来
- 批准号:
2222619 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: RI: AF: Small: Long-Term Impact of Fair Machine Learning under Strategic Individual Behavior
合作研究:RI:AF:小:战略性个人行为下公平机器学习的长期影响
- 批准号:
2202700 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: RI: AF: Small: Long-Term Impact of Fair Machine Learning under Strategic Individual Behavior
合作研究:RI:AF:小:战略性个人行为下公平机器学习的长期影响
- 批准号:
2301599 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
- 批准号:
2326170 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
- 批准号:
2326160 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
- 批准号:
2326193 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RM: Artificial Intelligence Technology for Future Music Performers
合作研究:FW-HTF-RM:未来音乐表演者的人工智能技术
- 批准号:
2326198 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
- 批准号:
2326407 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
- 批准号:
2326408 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-R: Future of Construction Workplace Health Monitoring
合作研究:FW-HTF-R:建筑工作场所健康监测的未来
- 批准号:
2401745 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RL: Understanding the Ethics, Development, Design, and Integration of Interactive Artificial Intelligence Teammates in Future Mental Health Work
合作研究:FW-HTF-RL:了解未来心理健康工作中交互式人工智能队友的伦理、开发、设计和整合
- 批准号:
2326146 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
- 批准号:
2326169 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: The Future of Aviation Inspection: Artificial Intelligence and Mixed Reality as Agents of Transformation
FW-HTF-RL/合作研究:航空检查的未来:人工智能和混合现实作为转型的推动者
- 批准号:
2326186 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant