ERI: Enabling tunable electronic device fabrication on flexible substrates using Barium Strontium Titanate (BST) printable ink development

ERI:使用钛酸锶钡 (BST) 可印刷油墨开发,在柔性基板上实现可调电子设备制造

基本信息

  • 批准号:
    2301693
  • 负责人:
  • 金额:
    $ 19.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Printed or additive manufacturing has application potential as a low-cost, high-resolution, fast prototyping of a range of complex circuits. Printed tunable devices proposed in this work will allow the electrical tuning of circuit functions, drastically reducing the cost, footprint, and weight of the overall circuitry compared to mechanically tunable electrical devices. These printed tunable electrical devices are critical to national security, especially radio communications. In addition, low-cost Internet of Things (IoT) and wearable devices will significantly benefit from the proposed tunable flexible electrical devices. However, currently, there are no tunable printable inks to fabricate tunable electrical devices on flexible substrates. In addition, existing printable materials need high-temperature processing (greater than 800 °C) to achieve the required tunability, which will damage most types of flexible substrates, such as plastics, paper, and fabrics. Multiple challenges and unique bottlenecks are associated with printable inks, and there are limited ongoing research efforts to solve these issues. This project will cover novel tunable materials syntheses, printable ink development, and the design, simulation, and fabrication of tunable electrical devices. This project will open a new paradigm of tunable flexible electronic devices. Both undergraduate and graduate students will directly benefit from this project, and the proposed educational outreach projects will enhance middle school students' interest and awareness of science and engineering careers. In addition, the proposed project's novel findings will be integrated into graduate-level printed electronics-related teaching.This project will comprehensively advance the fundamental understanding of the utilization of sinterless Barium Strontium Titanate (BST) nanoparticles as a tunable material for flexible electronics. The composition of BST nanoparticles to achieve the highest possible dielectric constant and tunability at room temperature (without sintering) will be identified. An in depth investigation will be carried out to determine the effects of the Ba:Sr molar fraction, the size, and the packing density of BST nanoparticles on dielectric tunability. High-resolution X-Ray diffraction patterns of sinterless BST nanoparticles under an applied electric field will be used to investigate the correlation between the variation of lattice parameters and the dielectric tunability. This will give a greater insight into the dielectric tunability of sinterless BST nanoparticles, which have not been experimentally reported yet. Lowering the required bias voltage to less than 25 Volts is a significant achievement that enables the usage of printed tunable flexible devices in real-world applications, such as phase shifters, frequency-selective surfaces, and phased array antennas. These devices are not currently feasible for real-world applications. The proposed work will significantly advance the knowledge of sinterless BST nanoparticles as a tunable material, nanoparticle ink formulation for direct-write printing technologies, and fully printed tunable radio and microwave frequency devices on flexible substrates.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
印刷或增材制造作为一系列复杂电路的低成本、高分辨率、快速原型制造具有应用潜力。在这项工作中提出的印刷可调谐器件将允许电路功能的电子调谐,与机械可调谐的电子器件相比,大大降低了整个电路的成本、占地面积和重量。这些印刷的可调谐电子设备对国家安全至关重要,尤其是无线电通信。此外,低成本的物联网(IoT)和可穿戴设备将显著受益于拟议的可调谐柔性电气设备。然而,目前还没有可调谐的印刷油墨来制造柔性基板上的可调谐电子器件。此外,现有的可印刷材料需要高温处理(大于800°C)才能达到所需的可调性,这将破坏大多数类型的柔性基材,如塑料,纸张和织物。可打印油墨面临着诸多挑战和独特的瓶颈,目前解决这些问题的研究努力有限。该项目将涵盖新型可调谐材料的合成、可印刷油墨的开发,以及可调谐电子器件的设计、模拟和制造。该项目将开启可调谐柔性电子器件的新范式。本科生和研究生都将直接受益于该项目,拟议的教育推广项目将提高中学生对理工科职业的兴趣和意识。此外,建议项目的新发现将整合到研究生水平的印刷电子相关教学中。该项目将全面推进对利用无烧结钛酸钡锶纳米颗粒作为柔性电子可调材料的基本认识。将确定BST纳米颗粒的组成,以实现室温下最高的介电常数和可调性(不烧结)。将进行深入的研究,以确定Ba:Sr摩尔分数,尺寸和BST纳米颗粒的堆积密度对介电可调性的影响。在外加电场作用下,利用高分辨率x射线衍射图研究无烧结BST纳米粒子的晶格参数变化与介电可调性之间的关系。这将使人们更深入地了解无烧结BST纳米颗粒的介电可调性,这一点尚未得到实验报道。将所需的偏置电压降低到25伏以下是一项重大成就,使印刷可调谐柔性器件能够在实际应用中使用,例如移相器,频率选择表面和相控阵天线。这些设备目前在实际应用中还不可行。所提出的工作将显著推进无烧结BST纳米颗粒作为可调材料的知识,纳米颗粒油墨配方用于直写印刷技术,以及在柔性基板上完全印刷可调谐无线电和微波频率器件。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oshadha Ranasingha其他文献

Oshadha Ranasingha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Enabling a circular economy for poultry via exploration of metabolism
通过探索新陈代谢实现家禽循环经济
  • 批准号:
    DE240100802
  • 财政年份:
    2024
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Discovery Early Career Researcher Award
International Centre-to-Centre Collaboration: New catalysts for acetylene processes enabling a sustainable future
国际中心间合作:乙炔工艺的新型催化剂实现可持续的未来
  • 批准号:
    EP/Z531285/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Research Grant
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
  • 批准号:
    NE/X005003/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Research Grant
Enabling Reliable Testing Of SMLM Datasets
实现 SMLM 数据集的可靠测试
  • 批准号:
    BB/X01858X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Research Grant
Enabling precision engineering of complex chemical products for high value technology sectors.
为高价值技术领域实现复杂化学产品的精密工程。
  • 批准号:
    EP/X040992/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Research Grant
CAREER: A cortex-basal forebrain loop enabling task-specific cognitive behavior
职业:皮层基底前脑环路实现特定任务的认知行为
  • 批准号:
    2337351
  • 财政年份:
    2024
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Continuing Grant
FMRG: Bio: Enabling Technologies for Biomanufacturing Extracellular Vesicle-Based Therapeutics
FMRG:生物:基于细胞外囊泡的生物制造治疗的使能技术
  • 批准号:
    2328276
  • 财政年份:
    2024
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Continuing Grant
CAREER: Integrated sources of multiphoton entanglement for enabling quantum interconnects
职业:用于实现量子互连的多光子纠缠集成源
  • 批准号:
    2339469
  • 财政年份:
    2024
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Continuing Grant
CAREER: Elastic Intermittent Computation Enabling Batteryless Edge Intelligence
职业:弹性间歇计算实现无电池边缘智能
  • 批准号:
    2339193
  • 财政年份:
    2024
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了