Enabling Reliable Testing Of SMLM Datasets

实现 SMLM 数据集的可靠测试

基本信息

  • 批准号:
    BB/X01858X/1
  • 负责人:
  • 金额:
    $ 79.65万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Fluorescence microscopy is a key technology for biomedical research due to its ability to image the distribution of specific proteins in cells. Over the last twenty years the resolution achievable with fluorescence microscopy has been improved from around 200nm down to 20nm. The most popular of these methods, single molecule light microscopy (SMLM), collects a series of images and then processes it to create a reconstructed image of the sample with improved resolution. While this method is experimentally simple and can achieve very good resolution, it has a major drawback: the image processing it relies on can lead to artifacts (false structures) in the reconstructed image that are hard to spot, leading biologists to draw incorrect conclusions about their data. It is extremely difficult to test for these artifacts, and methods to do so have only recently been developed. Here the two leading developers of data assessment for SMLM want to combine forces to create a new tool which enables testing using both of their approaches.We will create an integrated software package that tests for resolution (using a metric improved in accuracy compared to the standard one used) and two types of artifact. The first, artificial sharpening, is common issue encountered in multicolour and live cell SMLM, and any reconstruction method that doesn't find positions of fluorophores, but instead modifies the input images. The second examines how well the SMLM reconstructed image agrees with a widefield image of the sample, and is good at spotting missing structure, variation in the proportion of fluorophores being detected across the image, and issues caused by the background. By testing for all of these different types of artifact, users will be able to have confidence that their data analysis is not introducing errors into their images.Code will be developed on a Github repository and source code will be made available. This is in keeping with the long track record of the applicants in releasing open source software. The software will be released in two different packages: as an ImageJ/Fiji plugin (the most common system used by microscopists and biological/biomedical researchers) and also in napari (a new python-based image processing package, which is increasingly used by methods developers). We will seek to establish our method as a standard test before publication, and encourage the field to develop further extensions as our understanding of SMLM improves, with a process of code review ultimately determining which modifications are accepted.We will also assess a range of publicly available data, and acquire new exemplar datasets to allow us to illustrate to potential users likely artifacts and under what circumstances they might be encountered. While there is an increasing amount of SMLM data available, this usually focuses on high quality raw data which others might want to process. We also want to generate datasets in which raw data likely to produce errors is deliberately generated. The lack of consistent standards and tests contributes to the reproducibility crisis in science: it is impossible to benchmark or validate the data analysis in SMLM studies because there are no agreed standards to which such studies should adhere. Our approach, uniting the best of the current tests available, has the support and confidence of the SMLM developer community and support from facility managers and researchers who rely on SMLM. Setting such a standard for testing will allow journals to finally put in place a consistent set of requirements for SMLM data verification, which is both actually possible for non-specialist researchers to fulfill, and provides rigorous quality checks.
荧光显微镜是生物医学研究的关键技术,因为它能够成像细胞中特定蛋白质的分布。在过去的二十年中,荧光显微镜可实现的分辨率已从约200 nm提高到20 nm。这些方法中最流行的是单分子光学显微镜(SMLM),它收集一系列图像,然后对其进行处理,以创建具有更高分辨率的样品重建图像。虽然这种方法在实验上很简单,可以达到很好的分辨率,但它有一个主要的缺点:它所依赖的图像处理可能会导致重建图像中难以发现的伪影(虚假结构),导致生物学家对他们的数据得出错误的结论。测试这些工件是非常困难的,并且直到最近才开发出这样做的方法。在这里,两个领先的SMLM数据评估开发人员希望联合收割机的力量来创建一个新的工具,使测试使用他们的两种方法。我们将创建一个集成的软件包,测试分辨率(使用一个度量标准相比,在精度上有所提高)和两种类型的工件。第一种是人工锐化,这是多色和活细胞SMLM以及任何不找到荧光团位置但修改输入图像的重建方法中遇到的常见问题。第二个检查SMLM重建图像与样品的宽视场图像的一致性,并且擅长发现缺失的结构,在整个图像中检测到的荧光团比例的变化以及由背景引起的问题。通过对所有这些不同类型的工件进行测试,用户将能够确信他们的数据分析不会在他们的图像中引入错误。代码将在Github存储库上开发,源代码将提供。这与申请人发布开放源码软件的长期记录是一致的。该软件将以两种不同的软件包发布:ImageJ/Fiji插件(显微镜和生物/生物医学研究人员使用的最常见的系统)和napari(一种新的基于Python的图像处理软件包,越来越多地被方法开发人员使用)。我们将寻求在出版之前将我们的方法建立为标准测试,并鼓励该领域随着我们对SMLM的理解的提高而开发进一步的扩展,并通过代码审查过程最终确定哪些修改是可以接受的。我们还将评估一系列公开可用的数据,并获取新的样本数据集,以使我们能够向潜在用户说明可能的工件以及在什么情况下可能遇到它们。虽然有越来越多的SMLM数据可用,这通常集中在其他人可能想要处理的高质量原始数据。我们还希望生成这样的数据集,其中故意生成可能产生错误的原始数据。缺乏一致的标准和测试有助于科学的再现性危机:不可能对SMLM研究中的数据分析进行基准测试或验证,因为这些研究没有一致的标准。我们的方法结合了当前可用的最佳测试,得到了SMLM开发人员社区的支持和信心,以及依赖SMLM的设施管理人员和研究人员的支持。设置这样的测试标准将使期刊最终为SMLM数据验证制定一套一致的要求,这对于非专业研究人员来说实际上是可能的,并提供严格的质量检查。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Susan Cox其他文献

Force-transducing molecular ensembles at growing microtubule tips control mitotic spindle size
生长中的微管尖端的力转导分子集合控制有丝分裂纺锤体大小
  • DOI:
    10.1038/s41467-024-54123-2
  • 发表时间:
    2024-11-14
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Lee-Ya Chu;Daniel Stedman;Julian Gannon;Susan Cox;Georgii Pobegalov;Maxim I. Molodtsov
  • 通讯作者:
    Maxim I. Molodtsov
Assessing the Knowledge of Fourth-Year Medical Students in Milestones Level 1
  • DOI:
    10.1007/s40670-016-0292-1
  • 发表时间:
    2016-07-02
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    David Marzano;Emily Kobernik;Susan Cox;John L. Dalrymple;Lorraine Dugoff;Maya Hammoud
  • 通讯作者:
    Maya Hammoud
“Tis Better to Give Than to Receive?” Health-related Benefits of Delivering Peer Support in Type 2 Diabetes: An Explanatory Sequential Mixed-methods Study
  • DOI:
    10.1016/j.jcjd.2022.02.006
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rowshanak Afshar;Rawel Sidhu;Amir S. Askari;Diana Sherifali;Pat G. Camp;Susan Cox;Tricia S. Tang
  • 通讯作者:
    Tricia S. Tang
Synergistic inhibition of human immunodeficiency virus replication in vitro by combinations of 3'-azido-3'-deoxythymidine and 3'-fluoro-3'-deoxythymidine.
3-叠氮基-3-脱氧胸苷和3-氟-3-脱氧胸苷的组合在体外协同抑制人类免疫缺陷病毒复制。
  • DOI:
    10.1089/aid.1990.6.1197
  • 发表时间:
    1990
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Johan Harmenberg;A. Åkesson;L. Vrang;Susan Cox
  • 通讯作者:
    Susan Cox

Susan Cox的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Susan Cox', 18)}}的其他基金

Mesoscale structural biology using deep learning
使用深度学习的介观结构生物学
  • 批准号:
    BB/T011823/1
  • 财政年份:
    2021
  • 资助金额:
    $ 79.65万
  • 项目类别:
    Research Grant
A Bessel beam light sheet microscope
贝塞尔光束光片显微镜
  • 批准号:
    BB/S019065/1
  • 财政年份:
    2019
  • 资助金额:
    $ 79.65万
  • 项目类别:
    Research Grant
Molecular relativity: tracking single molecule movement relative to cell structures
分子相对论:跟踪相对于细胞结构的单分子运动
  • 批准号:
    BB/R021767/1
  • 财政年份:
    2018
  • 资助金额:
    $ 79.65万
  • 项目类别:
    Research Grant
Optimising acquisition speed in localisation microscopy
优化定位显微镜的采集速度
  • 批准号:
    BB/N022696/1
  • 财政年份:
    2016
  • 资助金额:
    $ 79.65万
  • 项目类别:
    Research Grant
Bayesian analysis of images to provide fluorescence ultramicroscopy
对图像进行贝叶斯分析以提供荧光超显微术
  • 批准号:
    BB/K01563X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 79.65万
  • 项目类别:
    Research Grant
Children as Decision Makers
儿童作为决策者
  • 批准号:
    RES-451-25-4228
  • 财政年份:
    2006
  • 资助金额:
    $ 79.65万
  • 项目类别:
    Research Grant

相似海外基金

SHF: Medium: More Reliable Image Networks through Scene-based Specification, Neuro-symbolic Training, and Systematic Specification-driven Testing
SHF:中:通过基于场景的规范、神经符号训练和系统规范驱动测试实现更可靠的图像网络
  • 批准号:
    2312487
  • 财政年份:
    2023
  • 资助金额:
    $ 79.65万
  • 项目类别:
    Standard Grant
SBIR Phase II: Single wearable patch for cost-effective, reliable, and accurate home sleep apnea testing
SBIR 第二阶段:单个可穿戴贴片,用于经济高效、可靠且准确的家庭睡眠呼吸暂停测试
  • 批准号:
    2136470
  • 财政年份:
    2022
  • 资助金额:
    $ 79.65万
  • 项目类别:
    Cooperative Agreement
PFI-TT: Development of an Automated Cell Culturing Platform for Highly Efficient and Reliable Drug Testing in Physiologically Representative Disease Models
PFI-TT:开发自动化细胞培养平台,在生理代表性疾病模型中进行高效可靠的药物测试
  • 批准号:
    2141029
  • 财政年份:
    2022
  • 资助金额:
    $ 79.65万
  • 项目类别:
    Standard Grant
Testing and Discovery of a Reliable and Sustainable Drinking Water Idea for Rural Communities Impacting SDG 6/3/12&13
为农村社区测试和发现可靠且可持续的饮用水理念,影响可持续发展目标 6/3/12
  • 批准号:
    10049100
  • 财政年份:
    2022
  • 资助金额:
    $ 79.65万
  • 项目类别:
    Collaborative R&D
SBIR Phase I: Development of reliable pyrazinamide susceptibility testing at neutral pH
SBIR 第一阶段:开发中性 pH 值下可靠的吡嗪酰胺药敏测试
  • 批准号:
    2136133
  • 财政年份:
    2022
  • 资助金额:
    $ 79.65万
  • 项目类别:
    Standard Grant
Reliable by Construction Distributed Systems: a Toolchain for Development and Testing
构建可靠的分布式系统:用于开发和测试的工具链
  • 批准号:
    2619407
  • 财政年份:
    2021
  • 资助金额:
    $ 79.65万
  • 项目类别:
    Studentship
SBIR Phase I: Single wearable patch for cost-effective, reliable, and accurate home sleep apnea testing
SBIR 第一阶段:单个可穿戴贴片,用于经济高效、可靠且准确的家庭睡眠呼吸暂停测试
  • 批准号:
    2016158
  • 财政年份:
    2020
  • 资助金额:
    $ 79.65万
  • 项目类别:
    Standard Grant
A reliable testing framework for connected/autonomous vehicles software
可靠的联网/自动驾驶汽车软件测试框架
  • 批准号:
    552385-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 79.65万
  • 项目类别:
    University Undergraduate Student Research Awards
Researches on Testing and Reliable Design of Superconducting Rapid Single-Flux-Quantum Circuits
超导快速单通量量子电路测试与可靠设计研究
  • 批准号:
    18K11213
  • 财政年份:
    2018
  • 资助金额:
    $ 79.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigating reproducible and reliable electrode fabrication for water quality testing
研究用于水质测试的可重复且可靠的电极制造
  • 批准号:
    513887-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 79.65万
  • 项目类别:
    Engage Grants Program
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了