ERI: Nanoscale and in-situ measurement of evaporating liquid thin film thickness

ERI:蒸发液体薄膜厚度的纳米级原位测量

基本信息

  • 批准号:
    2301973
  • 负责人:
  • 金额:
    $ 19.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Ultrafast evaporation phenomena have been recently reported, which can be applied to design high-efficient heat transfer devices such as evaporators, coolers, and condensers. High-efficient thermal energy systems can play a critical role in the climate crisis by reducing energy consumption. However, the fundamental mechanism for ultrafast evaporation beyond the theoretical limit is still being determined because of the limitation of measurement technology for the nanoscale liquid film dynamics during evaporation. The highly sensitive imaging technique based on nanophotonics and optical interference has been introduced to explore the concentration, temperature, and thickness, but not nanoscale liquid film thickness in evaporation. Therefore, the principle of this project is to provide a deep understanding of the underlying mechanism of ultrafast evaporation by measurement and analysis. The project will also include significant educational activities such as undergraduate/graduate research programs, course development, and outreach program for local high school students.The goal of this project is to study the evaporating liquid thin film in nanoscale and real-time to provide experimental evidence for the role of transition region in the recently reported ultrafast evaporation and understand its underlying physics. Ultrafast evaporation is reported on hydrophilic surfaces, but its working mechanism is not clear because of measurement difficulty with existing techniques. This project will achieve this goal by experiment and analysis: (i) Nanoscale thin film calibration with a sub-nanometer actuator on graphene/Au film metasurface, (ii) Nanoscale thin film dynamics under varying surface wettability and heat flux on flat and two-dimensional nanochannel, and (iii) Development of simultaneous technique of surface plasmon resonance imaging and reflection interference fringe for a broad range of film dynamics from sun-nanometers to hundreds of micron scales. Surface plasmon resonance imaging will be used to detect liquid film thickness variation in sub-nanometer resolution with the metasurface technique. The reflection interference fringe technique will also be verified to complement the result by surface plasmon resonance. Adiabatic and diffusive film theory will be compared with experiments and numerical simulation such as ray tracing and modeling. This project is expected to provide a breakthrough in near-surface phenomena, including evaporation, boiling, condensation, and surface wetting, through innovative optical characterization and its physical understanding.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
超快蒸发现象是近年来出现的一种新现象,它可用于设计高效的传热装置,如蒸发器、冷却器和冷凝器。高效的热能系统可以通过减少能源消耗在气候危机中发挥关键作用。然而,由于蒸发过程中纳米级液膜动力学测量技术的限制,超过理论极限的超快蒸发的基本机制仍有待确定。基于纳米光子学和光学干涉的高灵敏度成像技术已被引入探索蒸发中的浓度、温度和厚度,而不是纳米级液膜厚度。因此,本项目的原则是通过测量和分析来深入了解超快蒸发的潜在机制。该项目还将包括重要的教育活动,如本科生/研究生研究计划,课程开发和当地高中生的外展计划。该项目的目标是在纳米级和实时研究蒸发液体薄膜,为最近报道的超快蒸发中过渡区的作用提供实验证据,并了解其背后的物理。超快蒸发在亲水性表面上有报道,但其工作机理尚不清楚,因为现有技术测量困难。本项目将通过实验和分析来实现这一目标:(i)在石墨烯/Au膜超颖表面上用亚纳米致动器进行纳米尺度薄膜校准,(ii)在平坦和二维纳米通道上在变化的表面润湿性和热通量下的纳米尺度薄膜动力学,和(iii)开发表面等离子体共振成像和反射干涉条纹的同时技术,用于太阳-纳米到数百微米尺度。表面等离子体共振成像将用于检测亚纳米分辨率的超表面技术的液体膜厚度的变化。反射干涉条纹技术也将被验证,以补充表面等离子体共振的结果。绝热和扩散膜理论将与实验和数值模拟,如光线跟踪和建模进行比较。该项目有望通过创新的光学表征及其物理理解,在近地表现象(包括蒸发、沸腾、冷凝和表面润湿)方面取得突破。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Iltai Kim其他文献

Iltai Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Development of a nanoscale, near-infrared spectroscopy imaging tool for in situ, rapid and label-free analysis of single extracellular vesicles
开发纳米级近红外光谱成像工具,用于单个细胞外囊泡的原位、快速、无标记分析
  • 批准号:
    BB/X004449/1
  • 财政年份:
    2023
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Research Grant
In Situ Nanoscale Study of Electrocatalysts for Renewable Fuels
可再生燃料电催化剂的原位纳米研究
  • 批准号:
    RGPIN-2021-03310
  • 财政年份:
    2022
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Discovery Grants Program - Individual
Design and in situ Characterization of High-Surface Area Metallic and Bimetallic Nanoscale Catalysts
高比表面积金属和双金属纳米催化剂的设计和原位表征
  • 批准号:
    RGPIN-2020-05418
  • 财政年份:
    2022
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Discovery Grants Program - Individual
Nanoscale cryo-electron tomographic analysis of nucleosome condensates in neuronal chromatin
神经元染色质核小体凝聚物的纳米级冷冻电子断层扫描分析
  • 批准号:
    10669760
  • 财政年份:
    2022
  • 资助金额:
    $ 19.97万
  • 项目类别:
In Situ Nanoscale Study of Electrocatalysts for Renewable Fuels
可再生燃料电催化剂的原位纳米研究
  • 批准号:
    DGECR-2021-00251
  • 财政年份:
    2021
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Discovery Launch Supplement
Design and in situ Characterization of High-Surface Area Metallic and Bimetallic Nanoscale Catalysts
高比表面积金属和双金属纳米催化剂的设计和原位表征
  • 批准号:
    RGPIN-2020-05418
  • 财政年份:
    2021
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Discovery Grants Program - Individual
In Situ Nanoscale Study of Electrocatalysts for Renewable Fuels
可再生燃料电催化剂的原位纳米研究
  • 批准号:
    RGPIN-2021-03310
  • 财政年份:
    2021
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Discovery Grants Program - Individual
Nanoscale control of materials properties by in-situ defect engineering
通过原位缺陷工程对材料性能进行纳米级控制
  • 批准号:
    468617440
  • 财政年份:
    2021
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Research Grants
Multiplexed Nanoscale Protein Mapping Through Expansion Microscopy and Immuno-SABER
通过膨胀显微镜和免疫 SABRE 进行多重纳米级蛋白质图谱
  • 批准号:
    10088537
  • 财政年份:
    2020
  • 资助金额:
    $ 19.97万
  • 项目类别:
Nanoscale programing of cellular and physiological phenotypes
细胞和生理表型的纳米级编程
  • 批准号:
    10543756
  • 财政年份:
    2020
  • 资助金额:
    $ 19.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了