RUI: Volumes in tropical geometry
RUI:热带几何中的体积
基本信息
- 批准号:2302024
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Throughout the last several decades, tropical geometry has emerged as an influential bridge between the disparate subjects of algebraic and discrete geometry. In essence, tropical geometry replaces geometric spaces modeled by nonlinear equations (a parabola or a sphere, for example) with geometric spaces modeled by linear equations (a line or a plane, for example). Crucially, this bridge runs in both directions, allowing one to study the rich structure of nonlinear spaces using linear and combinatorial techniques while also allowing one to import the deep geometric framework of algebraic geometry into the study of combinatorics. This project will build a new lane in this bridge that is centered around the classical concept of volume, with applications in both combinatorics and algebraic geometry. In addition to the intellectual and mathematical outcomes of this project, the principal investigator will use the line of research problems in this project as an avenue to train and support a diverse community of student researchers at his home institution of San Francisco State University, preparing them to succeed in PhD programs and research careers in the sciences. One of the most important ways in which volumes arise in algebraic geometry is through the study of divisors on algebraic varieties, which are fundamental objects for studying the defining equations of a variety. Given a divisor on a projective variety, there are at least two volume-theoretic interpretations for the degree of its top power: it is the volume of the associated compact Riemannian manifold, and it is the volume of the Newton-Okounkov body associated to the divisor. This project will develop parallels of these notions in tropical geometry by introducing volume-theoretic tools for studying divisors and intersection numbers on tropical varieties. Applications of the volume-theoretic tools introduced in this project include a new geometric understanding of recent influential results concerning log-concavity of characteristic polynomials of matroids, allowing one to generalize these log-concavity results to intersection numbers on a much larger class of tropical varieties than was accessible by previous approaches, as well as the development of new tropical methods for studying cones of divisors on tropical compactifications of algebraic varieties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几十年里,热带几何已经成为代数和离散几何这两个不同学科之间有影响力的桥梁。本质上,热带几何用线性方程(如直线或平面)模拟的几何空间取代了非线性方程(如抛物线或球面)模拟的几何空间。至关重要的是,这座桥是双向的,允许人们使用线性和组合技术研究非线性空间的丰富结构,同时也允许人们将代数几何的深层几何框架引入到组合学的研究中。该项目将在这座桥上建造一条新的车道,以经典的体积概念为中心,同时应用组合学和代数几何。除了该项目的智力和数学成果外,首席研究员还将利用该项目中的研究问题作为培训和支持其所在的旧金山州立大学的多元化学生研究人员社区的途径,为他们在博士课程和科学研究事业中取得成功做好准备。在代数几何中,体积产生的最重要的途径之一是通过研究代数变量上的除数,这是研究变量方程定义的基本对象。给定射影变量上的一个除数,其上幂的程度至少有两种体积理论解释:它是相关紧致黎曼流形的体积,它是与除数相关的牛顿-奥昆科夫体的体积。本项目将通过引入研究热带品种的除数和交数的体积理论工具,在热带几何中发展这些概念的相似之处。本项目中引入的体积理论工具的应用包括对最近关于拟阵特征多项式的对数凹凸性的有影响的结果的新的几何理解,允许人们将这些对数凹凸性结果推广到比以前的方法更大的一类热带品种的交数上。以及研究代数品种热带紧化的除数锥的热带新方法的发展。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dustin Ross其他文献
Tropical fans and normal complexes: Putting the “volume” back in “volume polynomials”
热带扇与正常复形:将“体积”放回“体积多项式”中
- DOI:
10.1016/j.aim.2023.108981 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:1.500
- 作者:
Anastasia Nathanson;Dustin Ross - 通讯作者:
Dustin Ross
Localization and gluing of orbifold amplitudes: The Gromov-Witten orbifold vertex
- DOI:
10.1090/s0002-9947-2013-05835-7 - 发表时间:
2011-09 - 期刊:
- 影响因子:1.3
- 作者:
Dustin Ross - 通讯作者:
Dustin Ross
Donaldson-Thomas Theory and Resolutions of Toric Transverse A-Singularities
唐纳森-托马斯理论和环面横向 A 奇点的解析
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Dustin Ross - 通讯作者:
Dustin Ross
The gerby Gopakumar-Mariño-Vafa formula
gerby Gopakumar-Mariño-Vafa 公式
- DOI:
10.2140/gt.2013.17.2935 - 发表时间:
2012 - 期刊:
- 影响因子:2
- 作者:
Dustin Ross;Zhengyu Zong - 通讯作者:
Zhengyu Zong
Dustin Ross的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dustin Ross', 18)}}的其他基金
RUI: Compactifying Moduli Spaces of Orbits, Covers, and Curves
RUI:压缩轨道、覆盖和曲线的模空间
- 批准号:
2001439 - 财政年份:2020
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
相似海外基金
Emerging urban drone geographies: the practices, politics, and volumes of density governance in the post-pandemic city.
新兴城市无人机地理:大流行后城市的密度治理的实践、政治和数量。
- 批准号:
2888085 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Studentship
RUI: Pure and Applied Knot Theory: Skeins, Hyperbolic Volumes, and Biopolymers
RUI:纯结理论和应用结理论:绞纱、双曲体积和生物聚合物
- 批准号:
2305414 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: MPS-Ascend: Probing small galactic scales in large volumes with the Rubin Observatory
博士后奖学金:MPS-Ascend:利用鲁宾天文台探测大量的小星系尺度
- 批准号:
2316748 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Fellowship Award
Nudging behaviours Towards Consistent Home Recycling (NoT-a-CHoRe), reducing contamination and increasing volumes of correctly separated plastics packaging in household waste streams
推动行为实现一致的家庭回收(NoT-a-CHoRe),减少污染并增加家庭废物流中正确分离的塑料包装的数量
- 批准号:
10054605 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Collaborative R&D
Development of sustainable composite sandwich-panels using recycled and renewable materials for vehicle chassis construction at high volumes.
使用回收和可再生材料开发可持续复合夹层板,用于大批量车辆底盘构造。
- 批准号:
10076029 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Grant for R&D
CAREER: Multi-aperture 3D microscopy for cellular-scale measurement over macroscopic volumes
职业:用于宏观体积细胞尺度测量的多孔 3D 显微镜
- 批准号:
2238845 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Collaborative Research: Bounding global ice volumes over the last glacial cycle using reconstructions of Bering Strait flooding
合作研究:利用白令海峡洪水的重建来限制上一个冰川周期的全球冰量
- 批准号:
2327031 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Femto-seq: Targeted photo-biotinylation, pulldown and sequencing of locus and region-specific DNA from femtoliter volumes within individual cells
Femto-seq:从单个细胞内的飞升体积中对位点和区域特异性 DNA 进行靶向光生物素化、下拉和测序
- 批准号:
10587721 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
An Innovative Knowledge Graph approach to extract high volumes of climate and environmental structured and unstructured data
用于提取大量气候和环境结构化和非结构化数据的创新知识图方法
- 批准号:
10030909 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Small Business Research Initiative
Investigating Electrochemistry in Confined Volumes
研究有限体积内的电化学
- 批准号:
RGPIN-2020-04609 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Discovery Grants Program - Individual