Modular representations and affinizations
模块化表示和关联
基本信息
- 批准号:2302147
- 负责人:
- 金额:$ 67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Symmetries play a key role in various parts of science and their systematic study in various dimensions is the subject of representation theory in mathematics. In recent years it has become apparent that, more generally, it is important to investigate the phenomenon that groups of symmetries themselves possess symmetries, which leads to the notion of higher representation theory. This project will develop this viewpoint of higher representation theory further, with an emphasis on applications to solving open problems in the theory of modular representations of finite groups of Lie type. The project will provide research training opportunities for graduate students.In more detail, this project will bring higher representations of toroidal Lie algebras into the study of modular representations of finite groups of Lie type, providing two-variable conjectural decomposition matrices for those groups. An important part of the project is the development of an affinization of the theory of two-representations of Kac-Moody algebras. A second part of the project is based on a new degeneration of modular representations of finite groups of Lie type. This degeneration leads to connections with Hilbert schemes of points on surfaces and to two-variable combinatorics, which arise from perversity properties of derived equivalences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对称性在科学的各个部分都起着关键作用,它们在各个维度上的系统研究是数学表示论的主题。近年来,人们越来越清楚地认识到,更一般地说,研究对称群本身具有对称性的现象是很重要的,这导致了高级表示论的概念。这个项目将进一步发展这种观点的高级表示理论,重点是应用程序解决开放的问题,在理论的模表示的有限群的李型。本研究计划将为研究生提供研究训练的机会,更详细地说,本研究计划将把环形李代数的高级表示引入李型有限群的模表示的研究中,为这些群提供二元的代数分解矩阵。该项目的一个重要组成部分是发展的仿射理论的两个表示的卡茨穆迪代数。该项目的第二部分是基于一个新的退化模表示有限群的李型。这种退化导致与希尔伯特计划的点在表面上和两个变量的组合,这是从反常属性派生equivalents.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raphael Rouquier其他文献
Raphael Rouquier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raphael Rouquier', 18)}}的其他基金
FRG: Collaborative Research: Categorifying Quantum Three-Manifold Invariants
FRG:合作研究:量子三流形不变量的分类
- 批准号:
1664282 - 财政年份:2017
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
Higher Representations and Derived Equivalences
更高的表示和派生等价
- 批准号:
1702305 - 财政年份:2017
- 资助金额:
$ 67万 - 项目类别:
Continuing Grant
Representation theory and homotopical algebra
表示论和同伦代数
- 批准号:
1161999 - 财政年份:2012
- 资助金额:
$ 67万 - 项目类别:
Continuing Grant
Moduli spaces and higher representation theory
模空间和更高表示理论
- 批准号:
EP/F065787/1 - 财政年份:2008
- 资助金额:
$ 67万 - 项目类别:
Research Grant
相似海外基金
Scene Processing With Machine Learnable and Semantically Parametrized Representations RENEWAL
使用机器学习和语义参数化表示进行场景处理 RENEWAL
- 批准号:
MR/Y033884/1 - 财政年份:2025
- 资助金额:
$ 67万 - 项目类别:
Fellowship
P-adic Variation of Modular Galois Representations
模伽罗瓦表示的 P 进变分
- 批准号:
2401384 - 财政年份:2024
- 资助金额:
$ 67万 - 项目类别:
Continuing Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:
2331590 - 财政年份:2024
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
CAREER: Higgs bundles and Anosov representations
职业:希格斯丛集和阿诺索夫表示
- 批准号:
2337451 - 财政年份:2024
- 资助金额:
$ 67万 - 项目类别:
Continuing Grant
Unlocking the secrets of modular representations
解开模块化表示的秘密
- 批准号:
FL230100256 - 财政年份:2024
- 资助金额:
$ 67万 - 项目类别:
Australian Laureate Fellowships
Native, non-native or artificial phonetic content for pronunciation education: representations and perception in the case of L2 French
用于发音教育的母语、非母语或人工语音内容:以法语 L2 为例的表征和感知
- 批准号:
24K00093 - 财政年份:2024
- 资助金额:
$ 67万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Career: Learning Multimodal Representations of the Physical World
职业:学习物理世界的多模态表示
- 批准号:
2339071 - 财政年份:2024
- 资助金额:
$ 67万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347096 - 财政年份:2024
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
Parahoric Character Sheaves and Representations of p-Adic Groups
隐喻特征束和 p-Adic 群的表示
- 批准号:
2401114 - 财政年份:2024
- 资助金额:
$ 67万 - 项目类别:
Continuing Grant
Multiple Representations of Learning in Dynamics and Control: Exploring the Synergy of Low-Cost Portable Lab Equipment, Virtual Labs, and AI within Student Learning Activities
动力学和控制中学习的多重表示:探索低成本便携式实验室设备、虚拟实验室和人工智能在学生学习活动中的协同作用
- 批准号:
2336998 - 财政年份:2024
- 资助金额:
$ 67万 - 项目类别:
Standard Grant














{{item.name}}会员




