Moduli spaces and higher representation theory
模空间和更高表示理论
基本信息
- 批准号:EP/F065787/1
- 负责人:
- 金额:$ 51.14万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Representation theory is the study of symmetries via linear actions. Higher representation theory introduces a new paradigm, wherein spaces are replaced by higher structures (abelian or triangulated categories, or higher categorical structures). Such approaches have been advocated over the last twenty years, in particular by physicists working on quantum gravity, but very little has been achieved so far. It has appeared more and more important to study functors between categories, say to compare a category we are interested in with other categories we understand better. Our claim is that we should study the relations between these functors, and by doing so, we will discover some new symmetries of a fundamental type, analogous to classical symmetries for vector spaces. This would provide concrete (algebraic, numerical) information, while the current study of categories and functors is completed at an abstract level, and concrete data can be obtained only at the expense of a great loss of information. Such a study goes partly in line with usual representation theory: one defines interesting structures (classically one would, for example, consider symmetric groups, simple Lie algebras) and investigates the possible objects they can be symmetries of (classically one tries, for example, to classify simple representations, which are the building bricks for general representations). An important new feature is that, whilst vector spaces are fairly elementary structures, categories (abelian or triangulated) are not. An important consequence would be a better understanding of various categories of algebraic or geometric origin via the study of their higher symmetries. A crucial aspect of the proposal is to provide constructions of categories from other categories. Constructions of moduli spaces should be bypassed and the associated categorical structures should be constructed directly. Developing an algebraic substitute for moduli constructions is the main inspiration for the project. The aim of this project is to develop a new approach to counting invariants in (commutative and non-commutative) geometry, based on the PI's programme of higher representation theory.
表象理论是通过线性作用来研究对称性的。更高表示理论引入了一种新的范式,其中空间被更高的结构(阿贝尔或三角范畴,或更高的范畴结构)所取代。在过去的二十年里,这种方法一直被提倡,尤其是在量子引力方面工作的物理学家,但到目前为止,取得的成果很少。研究范畴之间的函子显得越来越重要,比如将我们感兴趣的范畴与我们更好地理解的其他范畴进行比较。我们的主张是,我们应该研究这些函子之间的关系,通过这样做,我们将发现一些新的基本类型的对称,类似于向量空间的经典对称。这将提供具体的(代数的,数值的)信息,而目前对范畴和函子的研究是在抽象的水平上完成的,只有以大量信息损失为代价才能获得具体的数据。这样的研究部分符合通常的表示理论:人们定义了有趣的结构(经典地,人们会考虑对称群、单李代数),并研究它们可能是其对称性的对象(经典地,例如,人们试图对简单表示进行分类,简单表示是一般表示的基石)。一个重要的新特征是,虽然向量空间是相当基本的结构,但范畴(阿贝尔或三角化)不是。一个重要的结果将是通过研究它们的更高对称性来更好地理解各种代数或几何起源范畴。该提案的一个关键方面是提供来自其他类别的类别结构。应该绕过模空间的构造,而直接构造相关的范畴结构。开发模结构的代数替代品是该项目的主要灵感。这个项目的目的是开发一种新的方法来计算(交换和非交换)几何中的不变量,基于PI的更高表示理论的程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raphael Rouquier其他文献
Raphael Rouquier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raphael Rouquier', 18)}}的其他基金
Modular representations and affinizations
模块化表示和关联
- 批准号:
2302147 - 财政年份:2023
- 资助金额:
$ 51.14万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Categorifying Quantum Three-Manifold Invariants
FRG:合作研究:量子三流形不变量的分类
- 批准号:
1664282 - 财政年份:2017
- 资助金额:
$ 51.14万 - 项目类别:
Standard Grant
Higher Representations and Derived Equivalences
更高的表示和派生等价
- 批准号:
1702305 - 财政年份:2017
- 资助金额:
$ 51.14万 - 项目类别:
Continuing Grant
Representation theory and homotopical algebra
表示论和同伦代数
- 批准号:
1161999 - 财政年份:2012
- 资助金额:
$ 51.14万 - 项目类别:
Continuing Grant
相似国自然基金
Bergman空间上的Toeplitz算子及Hankel算子的性质
- 批准号:11126061
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
分形上的分析及其应用
- 批准号:10471150
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: K-stability and moduli spaces of higher dimensional varieties
职业:K-稳定性和高维簇的模空间
- 批准号:
2237139 - 财政年份:2023
- 资助金额:
$ 51.14万 - 项目类别:
Continuing Grant
The higher algebra of spaces of quantum systems
量子系统空间的高等代数
- 批准号:
RGPIN-2021-02424 - 财政年份:2022
- 资助金额:
$ 51.14万 - 项目类别:
Discovery Grants Program - Individual
The higher algebra of spaces of quantum systems
量子系统空间的高等代数
- 批准号:
RGPAS-2021-00035 - 财政年份:2022
- 资助金额:
$ 51.14万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Black Women, State Violence and Higher Education Spaces: How Black women navigate activism in Higher Education Spaces in the UK and US
黑人女性、国家暴力和高等教育空间:黑人女性如何在英国和美国的高等教育空间中应对激进主义
- 批准号:
2750370 - 财政年份:2022
- 资助金额:
$ 51.14万 - 项目类别:
Studentship
The higher algebra of spaces of quantum systems
量子系统空间的高等代数
- 批准号:
RGPIN-2021-02424 - 财政年份:2021
- 资助金额:
$ 51.14万 - 项目类别:
Discovery Grants Program - Individual
The higher algebra of spaces of quantum systems
量子系统空间的高等代数
- 批准号:
RGPAS-2021-00035 - 财政年份:2021
- 资助金额:
$ 51.14万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
The higher algebra of spaces of quantum systems
量子系统空间的高等代数
- 批准号:
DGECR-2021-00002 - 财政年份:2021
- 资助金额:
$ 51.14万 - 项目类别:
Discovery Launch Supplement
Moduli Spaces of Sheaves in Higher Dimensions
高维滑轮模空间
- 批准号:
2442605 - 财政年份:2020
- 资助金额:
$ 51.14万 - 项目类别:
Studentship
Lad culture in online and offline UK higher education spaces
英国线上和线下高等教育空间中的小伙子文化
- 批准号:
1948262 - 财政年份:2017
- 资助金额:
$ 51.14万 - 项目类别:
Studentship














{{item.name}}会员




