Diophantine Approximation to Closed Subschemes and Integral Points on Varieties
闭子方案和品种积分点的丢番图逼近
基本信息
- 批准号:2302298
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project studies topics central to arithmetic and number theory, with a primary focus on the subject of Diophantine approximation. At its core, Diophantine approximation consists of the study of rational numbers which closely approximate a given real number. This topic has an ancient history, going back to at least the first rational approximations for pi, and in modern times has led to several deep applications in number theory and throughout mathematics. The PI will study generalizations and improvements of several inequalities in the subject, with a particular focus on Schmidt’s Subspace Theorem and its relation to the geometry of closed subschemes. The PI will pursue applications to a central conjecture in the subject, Vojta’s conjecture, as well as connections to recent inequalities involving greatest common divisors. In a related direction, the PI will explore the classical and fundamental problem of effectively determining the set of integer solutions to a system of polynomial equations, with an emphasis on higher-dimensional problems where the techniques are less developed and understood. The projects have additional close connections and consequences for diverse areas of mathematics beyond number theory, including geometry and complex analysis. The project will support a wide range of mentoring activities and research opportunities, involving the training of undergraduate students, graduate students, and postdoctoral researchers. In particular, the PI plans to continue creating and supervising high school and undergraduate research projects, drawn from the PI’s research program. A recent line of research in Diophantine approximation studies inequalities involving heights associated to closed subschemes, as opposed to the classical setting of heights associated to divisors. The PI plans to develop this theory of Diophantine approximation to closed subschemes, and to explore applications of the theory to integral points on varieties. In one direction, the PI will study refinements and improvements of the Schmidt Subspace Theorem for closed subschemes, including extensions to the setting of m-subgeneral position and generalizations of the Nochka-Ru-Wong theorem. In another direction, the PI will study and develop recent inequalities involving greatest common divisors and their connections with Vojta’s conjecture, and develop function field analogues and applications. A last set of projects are centered on discovering applications of the new Diophantine approximation inequalities to integral points on varieties, including developing effective methods for studying integral points, particularly on higher-dimensional varieties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究的主题是算术和数论的核心,主要集中在丢番图近似的主题上。丢番图逼近的核心是研究接近给定真实的数的有理数。这个话题有着古老的历史,至少可以追溯到π的第一个有理近似,在现代已经导致了数论和整个数学中的几个深入应用。PI将研究几个不等式的推广和改进,特别关注施密特的子空间定理及其与封闭子方案几何的关系。PI将继续应用于该主题的中心猜想,Vojta猜想,以及与最近涉及最大公约数的不等式的联系。在一个相关的方向,PI将探索有效地确定多项式方程组的整数解集的经典和基本问题,重点是技术开发和理解较少的高维问题。这些项目对数论以外的不同数学领域有着额外的密切联系和影响,包括几何和复分析。 该项目将支持范围广泛的指导活动和研究机会,包括本科生、研究生和博士后研究人员的培训。特别是,PI计划继续创建和监督高中和本科生的研究项目,从PI的研究计划得出。 丢番图近似研究的最新路线涉及高度不平等的研究与封闭的子计划,而不是经典的设置与除数的高度。PI计划发展这一理论的丢番图逼近封闭的子计划,并探讨应用该理论的整点品种。在一个方向上,PI将研究封闭子格式的施密特子空间定理的改进和改进,包括对m-次一般位置设置的扩展和Nochka-Ru-Wong定理的推广。在另一个方向上,PI将研究和开发最近涉及最大公约数的不等式及其与Vojta猜想的联系,并开发函数场模拟和应用。最后一组项目集中在发现新的丢番图近似不等式在品种上的整点的应用,包括开发研究整点的有效方法,特别是在高维品种上。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Levin其他文献
Vojta予想と数論的力学系の研究
Vojta猜想与算术动力系统研究
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Aaron Levin;Yu Yasufuku;安福 悠;安福 悠;Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;安福 悠 - 通讯作者:
安福 悠
Integral Points in One- and Two-Parameter Orbits
一参数和二参数轨道中的积分点
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Aaron Levin;Yu Yasufuku;安福 悠;安福 悠;Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;安福 悠;Yu Yasufuku;安福 悠;Yu Yasufuku;Yu Yasufuku - 通讯作者:
Yu Yasufuku
Bessel 関数とその微分の特殊値の代数独立性について
论贝塞尔函数及其导数特殊值的代数独立性
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Aaron Levin;Yu Yasufuku;安福 悠;安福 悠;Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;安福 悠;Yu Yasufuku;安福 悠;Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;安福 悠 - 通讯作者:
安福 悠
Vojta's Conjecture and Dynamics
沃伊塔猜想与动力学
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Holly Krieger;Aaron Levin;Zachary Scherr;Thomas Tucker;Yu Yasufuku;and Michael Zieve;Yu Yasufuku;安福 悠;Yu Yasufuku;Thomas Scanlon and Yu Yasufuku;Yu Yasufuku;Yu Yasufuku - 通讯作者:
Yu Yasufuku
Monomial Maps on P^2 and their Arithmetic Dynamics
P^2 上的单项式映射及其算术动力学
- DOI:
10.1016/j.jnt.2011.06.012 - 发表时间:
2011 - 期刊:
- 影响因子:0.7
- 作者:
Holly Krieger;Aaron Levin;Zachary Scherr;Thomas Tucker;Yu Yasufuku;and Michael Zieve;Yu Yasufuku;安福 悠;Yu Yasufuku;Thomas Scanlon and Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;Aryeh Gregor and Yu Yasufuku - 通讯作者:
Aryeh Gregor and Yu Yasufuku
Aaron Levin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Levin', 18)}}的其他基金
Greatest Common Divisors, Integral Points, and Diophantine Approximation
最大公约数、积分点和丢番图近似
- 批准号:
2001205 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Diophantine Approximation and Value Distribution Theory at the interface of Arithmetic and Complex Hyperbolic Geometry: A Research Workshop with Minicourse
算术与复杂双曲几何界面的丢番图近似和值分布理论:迷你课程研究研讨会
- 批准号:
1904332 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CAREER: Integral Points on Varieties and Related Tools and Topics
职业:品种及相关工具和主题的积分
- 批准号:
1352407 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Diophantine approximation, Nevanlinna theory, and integral points and holomorphic curves in higher-dimensional varieties
丢番图近似、Nevanlinna 理论以及高维簇中的积分点和全纯曲线
- 批准号:
1102563 - 财政年份:2011
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
PostDoctoral Research Fellowship in the Mathematical Sciences
数学科学博士后研究奖学金
- 批准号:
0503063 - 财政年份:2005
- 资助金额:
$ 18万 - 项目类别:
Fellowship
相似海外基金
High Dimensional Approximation, Learning, and Uncertainty
高维近似、学习和不确定性
- 批准号:
DP240100769 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Discovery Projects
Approximation theory of structured neural networks
结构化神经网络的逼近理论
- 批准号:
DP240101919 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Discovery Projects
Approximation properties in von Neumann algebras
冯·诺依曼代数中的近似性质
- 批准号:
2400040 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Approximation of transport maps from local and non-local Monge-Ampere equations
根据局部和非局部 Monge-Ampere 方程近似输运图
- 批准号:
2308856 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223987 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223985 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223986 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Lp-Approximation Properties, Multipliers, and Quantized Calculus
Lp 近似属性、乘子和量化微积分
- 批准号:
2247123 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Development of a novel best approximation theory with applications
开发一种新颖的最佳逼近理论及其应用
- 批准号:
DP230102079 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Discovery Projects
A Lebesgue Integral based Approximation for Language Modelling
基于勒贝格积分的语言建模近似
- 批准号:
EP/X019063/1 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Research Grant