Greatest Common Divisors, Integral Points, and Diophantine Approximation
最大公约数、积分点和丢番图近似
基本信息
- 批准号:2001205
- 负责人:
- 金额:$ 34.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project studies topics at the core of arithmetic and number theory. One of the most basic objects in mathematics is the greatest common divisor of two integers. The project will investigate generalizations and analogues of recently developed inequalities for greatest common divisors, and their connections with Vojta’s conjecture, a central and far-reaching conjecture. Another fundamental and important question, going back to antiquity, concerns understanding integer solutions to polynomial equations. The work will bring new ideas and perspectives to this important question, including research toward methods allowing one to algorithmically compute all integer solutions to large classes of equations. A fundamental tool for studying such equations comes from the subject of Diophantine approximation, which in its most basic form studies how well a real number can be approximated by rational numbers. The project will study various generalizations of one of the primary results in this subject, Schmidt’s subspace theorem. This research has close connections to and consequences for diverse areas of mathematics beyond number theory, including complex analysis and geometry. Additionally, the project will support a wide range of mentoring activities and research opportunities, involving the training of undergraduate students, graduate students, and postdoctoral researchers.The research supported by this award will involve the study of several questions revolving around greatest common divisors, integral points, Diophantine approximation, and their interrelations. The first set of projects center on the investigator's recent higher-dimensional generalization of results on greatest common divisors of polynomials evaluated at S-units. The project will study generalizations and extensions related to Vojta's conjecture, analogues in function fields, including applications, and a novel approach to analogous problems for abelian varieties. A second set of projects will focus on integral points on varieties. First, the project will continue work on aspects of Siegel’s theorem for integral points of bounded degree on curves. Second, the investigator will study an approach to effectively proving Siegel’s theorem for genus two curves. Fundamental tools for studying these problems come from the subject of Diophantine approximation, where Schmidt's subspace theorem is a central result.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究算术和数论的核心课题。数学中最基本的对象之一是两个整数的最大公约数。该项目将研究最近发展的最大公约数的不等式的推广和类比,以及它们与Vojta猜想的联系,Vojta猜想是一个中心和深远的猜想。另一个基本而重要的问题,可以追溯到古代,涉及到理解多项式方程的整数解。这项工作将为这一重要问题带来新的想法和视角,包括研究允许人们通过算法计算大类方程的所有整数解的方法。研究这类方程的一个基本工具来自丢番图近似,它的最基本形式是研究实数用有理数逼近的程度。该项目将研究本学科的一个主要结果--施密特子空间定理的各种推广。这项研究与数论以外的不同数学领域有着密切的联系和影响,包括复杂分析和几何。此外,该项目将支持广泛的指导活动和研究机会,包括本科生、研究生和博士后研究人员的培训。该奖项支持的研究将涉及围绕最大公约数、积分点、丢番图近似及其相互关系的几个问题的研究。第一组项目集中于研究人员最近对在S单位求值的多项式的最大公约数的结果的高维推广。该项目将研究与Vojta猜想有关的推广和扩展,函数领域的类似物,包括应用,以及解决阿贝尔变种类似问题的新方法。第二套项目将侧重于品种上的积分点。首先,该项目将继续研究曲线上有界次积分点的Siegel定理。其次,研究人员将研究一种有效证明亏格两条曲线的Siegel定理的方法。研究这些问题的基本工具来自丢番图近似的主题,其中施密特子空间定理是核心结果。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the degeneracy of integral points and entire curves in the complement of nef effective divisors
论nef有效除数的补中积分点和整条曲线的简并性
- DOI:10.1016/j.jnt.2020.05.013
- 发表时间:2020
- 期刊:
- 影响因子:0.7
- 作者:Heier, Gordon;Levin, Aaron
- 通讯作者:Levin, Aaron
Hilbert’s Irreducibility Theorem andideal class groups of quadratic fields
希尔伯特不可约定理和二次域的理想类群
- DOI:10.4064/aa211224-22-9
- 发表时间:2022
- 期刊:
- 影响因子:0.7
- 作者:Kulkarni, Kaivalya R.;Levin, Aaron
- 通讯作者:Levin, Aaron
Quadratic fields with a class group of large 3-rank
- DOI:10.4064/aa191027-22-6
- 发表时间:2019-10
- 期刊:
- 影响因子:0.7
- 作者:A. Levin;Shengkuan Yan;Luke Wiljanen
- 通讯作者:A. Levin;Shengkuan Yan;Luke Wiljanen
A generalized Schmidt subspace theorem for closed subschemes
- DOI:10.1353/ajm.2021.0008
- 发表时间:2017-12
- 期刊:
- 影响因子:1.7
- 作者:Gordon Heier;A. Levin
- 通讯作者:Gordon Heier;A. Levin
Intersections in subvarieties of ${\mathbb {G}}_{\mathrm {m}}^l$ and applications to lacunary polynomials
${mathbb {G}}_{mathrm {m}}^l$ 子类型的交集及其在缺陷多项式中的应用
- DOI:10.1090/tran/8470
- 发表时间:2022
- 期刊:
- 影响因子:1.3
- 作者:Corvaja, Pietro;Levin, Aaron;Zannier, Umberto
- 通讯作者:Zannier, Umberto
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Levin其他文献
Vojta予想と数論的力学系の研究
Vojta猜想与算术动力系统研究
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Aaron Levin;Yu Yasufuku;安福 悠;安福 悠;Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;安福 悠 - 通讯作者:
安福 悠
Integral Points in One- and Two-Parameter Orbits
一参数和二参数轨道中的积分点
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Aaron Levin;Yu Yasufuku;安福 悠;安福 悠;Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;安福 悠;Yu Yasufuku;安福 悠;Yu Yasufuku;Yu Yasufuku - 通讯作者:
Yu Yasufuku
Bessel 関数とその微分の特殊値の代数独立性について
论贝塞尔函数及其导数特殊值的代数独立性
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Aaron Levin;Yu Yasufuku;安福 悠;安福 悠;Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;安福 悠;Yu Yasufuku;安福 悠;Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;安福 悠 - 通讯作者:
安福 悠
Vojta's Conjecture and Dynamics
沃伊塔猜想与动力学
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Holly Krieger;Aaron Levin;Zachary Scherr;Thomas Tucker;Yu Yasufuku;and Michael Zieve;Yu Yasufuku;安福 悠;Yu Yasufuku;Thomas Scanlon and Yu Yasufuku;Yu Yasufuku;Yu Yasufuku - 通讯作者:
Yu Yasufuku
Monomial Maps on P^2 and their Arithmetic Dynamics
P^2 上的单项式映射及其算术动力学
- DOI:
10.1016/j.jnt.2011.06.012 - 发表时间:
2011 - 期刊:
- 影响因子:0.7
- 作者:
Holly Krieger;Aaron Levin;Zachary Scherr;Thomas Tucker;Yu Yasufuku;and Michael Zieve;Yu Yasufuku;安福 悠;Yu Yasufuku;Thomas Scanlon and Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;Yu Yasufuku;Aryeh Gregor and Yu Yasufuku - 通讯作者:
Aryeh Gregor and Yu Yasufuku
Aaron Levin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Levin', 18)}}的其他基金
Diophantine Approximation to Closed Subschemes and Integral Points on Varieties
闭子方案和品种积分点的丢番图逼近
- 批准号:
2302298 - 财政年份:2023
- 资助金额:
$ 34.98万 - 项目类别:
Standard Grant
Diophantine Approximation and Value Distribution Theory at the interface of Arithmetic and Complex Hyperbolic Geometry: A Research Workshop with Minicourse
算术与复杂双曲几何界面的丢番图近似和值分布理论:迷你课程研究研讨会
- 批准号:
1904332 - 财政年份:2019
- 资助金额:
$ 34.98万 - 项目类别:
Standard Grant
CAREER: Integral Points on Varieties and Related Tools and Topics
职业:品种及相关工具和主题的积分
- 批准号:
1352407 - 财政年份:2014
- 资助金额:
$ 34.98万 - 项目类别:
Continuing Grant
Diophantine approximation, Nevanlinna theory, and integral points and holomorphic curves in higher-dimensional varieties
丢番图近似、Nevanlinna 理论以及高维簇中的积分点和全纯曲线
- 批准号:
1102563 - 财政年份:2011
- 资助金额:
$ 34.98万 - 项目类别:
Standard Grant
PostDoctoral Research Fellowship in the Mathematical Sciences
数学科学博士后研究奖学金
- 批准号:
0503063 - 财政年份:2005
- 资助金额:
$ 34.98万 - 项目类别:
Fellowship
相似国自然基金
青藏高原高寒植物酚类物质分配格局的研究:基于“Common garden”实验
- 批准号:31200306
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
持続可能性の実現へ向けた幼児期の日本型Common Worlds Pedagogyの研究
为实现可持续发展而进行的日式幼儿共同世界教育学研究
- 批准号:
24K05787 - 财政年份:2024
- 资助金额:
$ 34.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deciphering the role of adipose tissue in common metabolic disease via adipose tissue proteomics
通过脂肪组织蛋白质组学解读脂肪组织在常见代谢疾病中的作用
- 批准号:
MR/Y013891/1 - 财政年份:2024
- 资助金额:
$ 34.98万 - 项目类别:
Research Grant
企業統治における機関投資家のあり方――共通株主(Common Ownership)の視点
机构投资者在公司治理中的作用——共同所有权视角
- 批准号:
24K16271 - 财政年份:2024
- 资助金额:
$ 34.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
An Eye-Tracking Study: Exploring Integrated Reading Tasks in the New Format of the English Common Test for Japanese University Admissions
眼动追踪研究:探索日本大学入学英语通用考试新形式中的综合阅读任务
- 批准号:
24K04032 - 财政年份:2024
- 资助金额:
$ 34.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidating the nature of the symbiosis between reef-building corals and common Endozoicomonas bacteria
阐明造礁珊瑚与常见内生单胞菌之间共生的本质
- 批准号:
2342561 - 财政年份:2024
- 资助金额:
$ 34.98万 - 项目类别:
Continuing Grant
Pathfinder Parks: Implementing a common framework to track & accelerate progress towards Net Zero in the South Downs National Park using the OnePlanet Platform.
Pathfinder Parks:实施通用框架来跟踪
- 批准号:
10093123 - 财政年份:2024
- 资助金额:
$ 34.98万 - 项目类别:
Demonstrator
SCC-CIVIC-FA Track B: Piloting a Decarbonization-Ready Common Home Assessment
SCC-CIVIC-FA 轨道 B:试点脱碳就绪的共同家庭评估
- 批准号:
2321865 - 财政年份:2024
- 资助金额:
$ 34.98万 - 项目类别:
Continuing Grant
Collaborative Research: MTM1: Microbial Genomic, Transcriptomic, and Survival Response to Common Built Environment Lighting
合作研究:MTM1:微生物基因组、转录组和对常见建筑环境照明的生存反应
- 批准号:
2401220 - 财政年份:2023
- 资助金额:
$ 34.98万 - 项目类别:
Standard Grant
Pioneer Parks: Modelling a common framework to track and accelerate progress towards Net Zero in National Parks using the One Planet Platform
先锋公园:使用 One Planet 平台建立一个通用框架来跟踪和加速国家公园实现净零排放的进展
- 批准号:
10061261 - 财政年份:2023
- 资助金额:
$ 34.98万 - 项目类别:
Feasibility Studies