Moduli and Arithmetic of Higher Dimensional Varieties
高维簇的模和算术
基本信息
- 批准号:2302550
- 负责人:
- 金额:$ 18.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Algebraic geometry is the study of geometric shapes which arise as solutions to polynomial equations. Some fundamental examples of these shapes are circles or hyperboloids, and as such, algebraic geometry is largely intertwined with many other fields of mathematics. One of the guiding research directions in algebraic geometry as well as the overall focus of this research project is understanding the classification of these shapes, a subfield known as the study of moduli spaces. Algebraic geometry as well as the study of moduli spaces have numerous applications, for example within cryptography as well as in understanding the structure underlying our universe via string theory and mathematical physics. This project includes training opportunities for both undergraduate and graduate students, as well as outreach efforts involving high school students from the local community.While we have an extensive understanding of moduli spaces of algebraic curves, we understand far less about moduli spaces of higher dimensional algebraic varieties (i.e. varieties of complex dimension at least two). In short, the main goal of this project is to further our understanding of higher dimensional moduli by leveraging many recent results in moduli theory and birational geometry, such as wall-crossing results that the PI has obtained in joint work with collaborators. The first project aims to use wall-crossing techniques to understand the underlying geometric structure and geometric properties of moduli spaces of higher dimensional algebraic varieties. Additionally, as most known results regarding moduli spaces of higher dimensional varieties focus on two cases, namely (log) general type pairs and (log) Fano pairs, the goal of the second project is to construct and study moduli spaces of (log) Calabi-Yau pairs using tools from the minimal model program and K-stability. Finally, the third project uses techniques from birational geometry, moduli spaces, and the minimal model program to understand various notions of hyperbolicity on varieties of (log) general type, including the distribution of rational and integral points.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数几何是研究几何形状的多项式方程的解决方案。这些形状的一些基本例子是圆或双曲面,因此,代数几何在很大程度上与许多其他数学领域交织在一起。代数几何的指导研究方向之一以及该研究项目的总体重点是了解这些形状的分类,这是一个被称为模空间研究的子领域。代数几何和模空间的研究有许多应用,例如在密码学中,以及通过弦理论和数学物理来理解我们宇宙的结构。该项目包括为本科生和研究生提供培训机会,以及与当地社区高中生的外联活动。虽然我们对代数曲线的模空间有广泛的了解,但对高维代数簇(即复维数至少为2的簇)的模空间的了解要少得多。简而言之,该项目的主要目标是通过利用模量理论和双有理几何中的许多最新结果,例如PI与合作者联合工作获得的跨壁结果,进一步了解高维模量。第一个项目的目的是使用跨壁技术来理解基本的几何结构和几何性质的模空间的高维代数簇。此外,由于大多数已知的结果,关于模空间的高维品种集中在两种情况下,即(日志)一般类型对和(日志)Fano对,第二个项目的目标是构建和研究(日志)Calabi-Yau对的模空间使用工具从最小模型程序和K-稳定性。最后,第三个项目使用的技术,从双有理几何,模空间,和最小模型程序,以了解各种(日志)一般类型的双曲线的各种概念,包括合理和积分点的分布。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth Ascher其他文献
Hyperbolicity of Varieties of Log General Type
原木一般类型品种的双曲性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Kenneth Ascher;A. Turchet - 通讯作者:
A. Turchet
Wall crossing for K-moduli spaces of plane curves.
平面曲线 K 模空间的壁交叉。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Kenneth Ascher;Kristin Devleming;Yuchen Liu - 通讯作者:
Yuchen Liu
Logarithmic stable toric varieties and their moduli
对数稳定复曲面簇及其模量
- DOI:
10.14231/ag-2016-014 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Kenneth Ascher;S. Molcho - 通讯作者:
S. Molcho
HYPERBOLICITY AND UNIFORMITY OF LOG GENERAL TYPE VARIETIES
原木一般类型品种的双曲性和均匀性
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Kenneth Ascher;Kristin DeVleming;A. Turchet - 通讯作者:
A. Turchet
Rational Points on Twisted K3 Surfaces and Derived Equivalences
扭曲 K3 曲面上的有理点及导出的等价
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Kenneth Ascher;Krishna Dasaratha;Alexander Perry;Rong Zhou - 通讯作者:
Rong Zhou
Kenneth Ascher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth Ascher', 18)}}的其他基金
Higher Dimensional Algebraic Varieties: Geometry and Arithmetic
高维代数簇:几何和算术
- 批准号:
2140781 - 财政年份:2021
- 资助金额:
$ 18.06万 - 项目类别:
Standard Grant
Higher Dimensional Algebraic Varieties: Geometry and Arithmetic
高维代数簇:几何和算术
- 批准号:
2001408 - 财政年份:2020
- 资助金额:
$ 18.06万 - 项目类别:
Standard Grant
相似海外基金
Higher Dimensional Algebraic Varieties: Geometry and Arithmetic
高维代数簇:几何和算术
- 批准号:
2140781 - 财政年份:2021
- 资助金额:
$ 18.06万 - 项目类别:
Standard Grant
Higher-dimensionalization of arithmetic geometry concerning arithmetic fundamental groups
关于算术基本群的算术几何的高维化
- 批准号:
20H01796 - 财政年份:2020
- 资助金额:
$ 18.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Automorphic forms on higher rank groups: Fourier coefficients, L-functions, and arithmetic
高阶群上的自守形式:傅立叶系数、L 函数和算术
- 批准号:
EP/T028343/1 - 财政年份:2020
- 资助金额:
$ 18.06万 - 项目类别:
Research Grant
Arithmetic and reduction of one-dimensional and higher-dimensional Abelian varieties over function fields
函数域上一维和高维阿贝尔簇的算术和约简
- 批准号:
442615504 - 财政年份:2020
- 资助金额:
$ 18.06万 - 项目类别:
Research Fellowships
Higher Dimensional Algebraic Varieties: Geometry and Arithmetic
高维代数簇:几何和算术
- 批准号:
2001408 - 财政年份:2020
- 资助金额:
$ 18.06万 - 项目类别:
Standard Grant
Higher dimensional arithmetic progressions in model sets
模型集中的高维算术级数
- 批准号:
549954-2020 - 财政年份:2020
- 资助金额:
$ 18.06万 - 项目类别:
University Undergraduate Student Research Awards
Arithmetic Geometry via Higher Dimensional Algebraic Geometry
通过高维代数几何的算术几何
- 批准号:
19K14512 - 财政年份:2019
- 资助金额:
$ 18.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Arithmetic Structure in the Integers and Higher-Order Fourier Analysis
整数的算术结构和高阶傅立叶分析
- 批准号:
487479-2016 - 财政年份:2018
- 资助金额:
$ 18.06万 - 项目类别:
Postgraduate Scholarships - Doctoral
Higher analogies of reflection principles and cardinal arithmetic
反射原理和基数算术的高级类比
- 批准号:
18K03397 - 财政年份:2018
- 资助金额:
$ 18.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)