Conference: Inclusive Paths in Explicit Number Theory

会议:显式数论中的包容性路径

基本信息

  • 批准号:
    2302536
  • 负责人:
  • 金额:
    $ 1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

This award will help support the participation of US-based students in the Summer School: Inclusive Paths in Explicit Number Theory, scheduled for July 2--15, 2023, at the Banff International Research Station satellite site at the University of British Columbia-Okanagan in Kelowna, Canada. A primary goal of the summer school is to train students on the most recent techniques in explicit number theory and to further advance the field. For the first time, leading experts in the field will come together to provide mentorship to a new generation of student researchers that is more representative of our diverse community. The first week of the summer school will consist of lectures and activities on key topics as well as professional development activities. In the second week, small groups of participants will work on cutting-edge research problems in a collaboration with senior and emerging researchers. It is hoped that the complementary expertise of group members will facilitate tackling research problems and lead to publishable state-of-the-art results. The field of explicit number theory is one of the most exacting flavors of number theory, focusing on simple-to-state yet notoriously difficult problems such as the Goldbach conjecture (every even number greater than 2 be written as the sum of two primes) and the Legendre conjecture (there is a prime number between every two consecutive squares). Producing important results in explicit number theory requires both scientific creativity and meticulous precision. In the past decade, there has been a flurry of activity in the field with significant explicit results for many L-functions, established by researchers in North America, Europe, and Australia. The summer school website is: https://sites.google.com/view/crgl-functions/summer-school-inclusive-paths-in-explicit-number-theoryThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将有助于支持美国学生参加暑期学校:显式数论中的包容性路径,计划于2023年7月2日至15日在加拿大基洛纳的不列颠哥伦比亚大学Okanagan的班夫国际研究站卫星站点。暑期学校的一个主要目标是培养学生在显式数论的最新技术,并进一步推进该领域。该领域的顶尖专家将首次齐聚一堂,为更能代表我们多元化社区的新一代学生研究人员提供指导。暑期学校的第一周将包括关于关键主题的讲座和活动以及专业发展活动。在第二周,小组参与者将与高级和新兴研究人员合作研究前沿研究问题。希望小组成员的互补性专门知识将有助于解决研究问题,并导致可持续的最先进的成果。显式数论领域是数论中最严格的领域之一,专注于简单到状态但众所周知困难的问题,如哥德巴赫猜想(每个大于2的偶数都可以写成两个素数之和)和勒让德猜想(每两个连续的平方之间存在一个素数)。在显式数论中产生重要的结果需要科学的创造力和一丝不苟的精度。在过去的十年中,在该领域有一系列的活动,许多L-函数的显着明确的结果,由北美,欧洲和澳大利亚的研究人员建立。暑期学校网站是:https://sites.google.com/view/crgl-functions/summer-school-inclusive-paths-in-explicit-number-theoryThis奖反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ghaith Hiary其他文献

A generalization of Lehman’s method
  • DOI:
    10.1007/s11139-024-00959-7
  • 发表时间:
    2024-10-28
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Jonathon Hales;Ghaith Hiary
  • 通讯作者:
    Ghaith Hiary

Ghaith Hiary的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ghaith Hiary', 18)}}的其他基金

Fast algorithms, computational complexity, and subconvexity bounds in analytic number theory
解析数论中的快速算法、计算复杂性和次凸界
  • 批准号:
    1406190
  • 财政年份:
    2014
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant

相似海外基金

Understanding The Political Representation of Men: A Novel Approach to Making Politics More Inclusive
了解男性的政治代表性:使政治更具包容性的新方法
  • 批准号:
    EP/Z000246/1
  • 财政年份:
    2025
  • 资助金额:
    $ 1万
  • 项目类别:
    Research Grant
INSPIRE- Intersectional Spaces of Participation: Inclusive, Resilient, Embedded
INSPIRE-交叉参与空间:包容性、弹性、嵌入式
  • 批准号:
    10106857
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    EU-Funded
Moving the dial on economic inactivity to build inclusive futures across Northern Ireland
扭转经济不活跃的局面,在整个北爱尔兰建立包容性的未来
  • 批准号:
    ES/Y502388/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Research Grant
HSI Implementation and Evaluation Project: Blending Socioeconomic-Inclusive Design into Undergraduate Computing Curricula to Build a Larger Computing Workforce
HSI 实施和评估项目:将社会经济包容性设计融入本科计算机课程,以建立更大规模的计算机队伍
  • 批准号:
    2345334
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Continuing Grant
Securing the Future: Inclusive Cybersecurity Education for All
确保未来:全民包容性网络安全教育
  • 批准号:
    2350448
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Research: Characterizing Gendered Socialization of Early Career Civil Engineers to Promote Inclusive Practices and Retention of a Diverse Workforce
研究:表征早期职业土木工程师的性别社会化,以促进包容性实践和保留多元化的劳动力
  • 批准号:
    2414042
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
NSF Engines Development Award: Accelerating A Just Energy Transition Through Innovative Nature-Inclusive Offshore Wind Farms (CT,DE,MA,MD,NJ,RI,VA)
NSF 发动机开发奖:通过创新的自然包容性海上风电场加速公正的能源转型(康涅狄格州、特拉华州、马里兰州、马里兰州、新泽西州、罗德岛州、弗吉尼亚州)
  • 批准号:
    2315558
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Cooperative Agreement
RCN: Incubating Infrastructure for Experimentation on Inclusive STEM Teaching Practices
RCN:包容性 STEM 教学实践实验孵化基础设施
  • 批准号:
    2322330
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 2: Project Pythia and Pangeo: Building an inclusive geoscience community through accessible, reusable, and reproducible workflows
合作研究:GEO OSE 第 2 轨道:Pythia 和 Pangeo 项目:通过可访问、可重用和可重复的工作流程构建包容性的地球科学社区
  • 批准号:
    2324304
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Household Inclusive Approaches to Domestic Decarbonisation
家庭包容性的国内脱碳方法
  • 批准号:
    10087514
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了