NSF-CSIRO: RAI4IoE: Responsible AI for Enabling the Internet of Energy
NSF-CSIRO:RAI4IoE:负责任的人工智能实现能源互联网
基本信息
- 批准号:2302720
- 负责人:
- 金额:$ 59.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The energy sector is going through substantial changes fueled by two key drivers: building a zero-carbon energy sector and the digital transformation of the energy infrastructure. The advances in AI technology and energy as a service market further fuel the convergence of these two drivers, resulting in the emergence of a new field of research in the energy sector – the Internet of Energy (IoE). With IoE, renewable distributed energy resources (DERs), such as electric cars, storage batteries, wind turbines and photovoltaics, can be connected and integrated for reliable energy distribution by leveraging advanced 5G-6G networks and AI technology. This allows DER owners as prosumers to participate in the energy market and derive economic incentives. DERs are inherently asset-driven and face equitable challenges (i.e., fair, diverse and inclusive). Without equitable access, privileged individuals, groups and organizations can participate and benefit at the cost of disadvantaged groups. The real-time management of DER resources not only brings out the equity problem to the IoE, it also collects highly sensitive location, time, activity dependent data, which requires to be handled responsibly (e.g., privacy, security and safety), for AI-enhanced predictions, for optimization and prioritization services, and for automated management of flexible resources. This US-Australia joint project plans to develop Equitable and Responsible AI framework, techniques and algorithms for the Internet of Energy, coined as RAI4IoE, aiming to elevate "energy poverty" by providing secure, privacy-preserving and equitable access to the networks of DERs for every citizen. The outcome of this research will advance the knowledge of responsible AI as the first principle in developing and deploying the IoE systems and services, in facilitating DER integration, promoting deep engagement with prosumers, aggregators and network operators, and enabling flexibility market of renewable energy supply.To facilitate equitable participation of all DER owners and users in the automated flexibility market, AI enabled IOE should be governed by the responsible AI frameworks and guidelines for distributed monitoring, scheduling, management, and consumption of DERs, while exercising and guaranteeing responsible and equitable AI through ensuring AI fairness and safeguarding AI privacy and AI security in an open and continuously evolving IoE ecosystem. This project will develop responsible AI frameworks, algorithms and compliance evaluation methods for the IoE, aiming to elevate "energy poverty" by providing secure, privacy-preserving and equitable access to the networks of DERs for every citizen. The project will develop innovative solutions along three dimensions. First, it develops an equitable AI framework for ensuring IoE for all, including enabling asset-poor clients to participate in distributed learning of global DER models, and integrating privacy and fairness-aware DER data collection with policy-driven data governance. Second, it develops a suite of responsible AI Algorithms and Models to increase the end-to-end resilience of IoE against disruptive events, including irregular, sparse or corrupted data, biases in data and algorithms, privacy violations, and other fraudulent DER activities. Third, it develops a suite of responsible and equitable AI compliance methods by combining explainable AI with software testing and verification methods. The research findings will lead to new generations of AI-enhanced distributed energy resource management systems. This research will also provide graduate and under-graduate students with diverse backgrounds the unique opportunities to learn responsible AI algorithm development, and the importance of equitable access to DERs from a broad cross-disciplinary perspective.This is a joint project between U.S. and Australian researchers funded by the Collaboration Opportunities in Responsible and Equitable AI under the U.S. NSF and the Australian Commonwealth Scientific and Industrial Research Organization (CSIRO).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能源行业正在经历由两个关键驱动因素推动的重大变革:建立零碳能源行业和能源基础设施的数字化转型。人工智能技术和能源即服务市场的进步进一步推动了这两个驱动因素的融合,导致能源领域出现了一个新的研究领域--能源互联网(IoE)。借助万物互联,电动汽车、蓄电池、风力涡轮机和光伏等可再生分布式能源(DER)可以通过利用先进的5G-6 G网络和人工智能技术进行连接和集成,以实现可靠的能源分配。这使得DER所有者作为产消者参与能源市场并获得经济激励。减债机制本质上是由资产驱动的,面临着公平的挑战(即,公平、多样和包容)。如果没有公平的机会,享有特权的个人、群体和组织就可能以弱势群体为代价参与和受益。DER资源的实时管理不仅给IoE带来了公平性问题,而且还收集高度敏感的位置、时间、活动相关数据,这些数据需要负责任地处理(例如,隐私、安全和保障),用于人工智能增强的预测,用于优化和优先级排序服务,以及用于灵活资源的自动化管理。这个美国-澳大利亚联合项目计划为能源互联网开发公平和负责任的人工智能框架,技术和算法,称为RAI 4 IoE,旨在通过为每个公民提供安全,隐私保护和公平访问DER网络来提升“能源贫困”。本研究的成果将推动对负责任的人工智能的认识,将其作为开发和部署万物互联系统和服务的首要原则,促进DER集成,促进与产消者、聚合商和网络运营商的深入接触,并实现可再生能源供应的灵活性市场。为了促进所有DER所有者和用户公平参与自动化灵活性市场,支持AI的IOE应该由负责任的AI框架和分布式监控、调度、管理和使用DER的指导方针来管理,同时通过在开放和不断发展的IoE生态系统中确保AI公平性和保护AI隐私和AI安全性来行使和保证负责任和公平的AI。该项目将为万物互联开发负责任的人工智能框架、算法和合规性评估方法,旨在通过为每个公民提供安全、隐私保护和公平的DER网络接入来提升“能源贫困”。该项目将从沿着三个方面开发创新解决方案。首先,它开发了一个公平的人工智能框架,以确保万物互联,包括使资产匮乏的客户能够参与全球DER模型的分布式学习,并将隐私和公平感知的DER数据收集与政策驱动的数据治理相结合。其次,它开发了一套负责任的人工智能算法和模型,以提高万物互联对破坏性事件的端到端弹性,包括不规则、稀疏或损坏的数据、数据和算法中的偏见、隐私侵犯以及其他欺诈性DER活动。第三,它通过将可解释的人工智能与软件测试和验证方法相结合,开发了一套负责任和公平的人工智能合规方法。研究结果将导致新一代人工智能增强的分布式能源管理系统。这项研究还将为具有不同背景的研究生和本科生提供学习负责任的人工智能算法开发的独特机会,以及从广泛的跨部门公平获得减债报告的重要性,这是美国和澳大利亚研究人员之间的一个联合项目,由美国NSF和澳大利亚联邦科学和技术委员会资助的负责任和公平AI合作机会。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ling Liu其他文献
Risk Pooling, Supply Chain Hierarchy, and Analysts’ Forecasts
风险分担、供应链层次结构和分析师预测
- DOI:
10.1111/poms.12904 - 发表时间:
2018-07 - 期刊:
- 影响因子:5
- 作者:
Nan Hu;Jian-Yu Ke;Ling Liu;Yue Zhang - 通讯作者:
Yue Zhang
Correlations between Anxiety and Depression, and Mental Elasticity in Malignant Hematopathy Patients
恶性血液病患者焦虑抑郁与心理弹性的相关性
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Ning Cao;Susu Yan;Jin;Yan Liu;Chuanxin Liu;Ling Liu - 通讯作者:
Ling Liu
Time-domain ICIC and optimized designs for 5G
时域 ICIC 和 5G 优化设计
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Ling Liu;Yiqing Zhou;Athanasios V. VASILAKOS;Lin TIAN;Jinglin SHI - 通讯作者:
Jinglin SHI
Proteomic pilot study of tuberculosis pleural effusion.
结核性胸腔积液的蛋白质组学初步研究。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:1
- 作者:
Jiaqiang Zhang;Li;Ling Liu;Jian;Weiping Fu;L. Dai - 通讯作者:
L. Dai
Hepatitis B virus reactivation in receiving prophylactic anti-viral therapy for Chinese HBsAg-positive patients of diffuse large B-cell lymphoma : a meta-analysis
中国 HBsAg 阳性弥漫性大 B 细胞淋巴瘤患者接受预防性抗病毒治疗时乙型肝炎病毒再激活:一项荟萃分析
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jingjing Li;Q. Zeng;Ling Liu;Chunlan Liu;Qi Wang;J. Qin;Siqi He;Yuxing Zhu;Zhen Zhang;Xiao;Changli Zheng;Jianda Zhou;P. Cao;K. Cao - 通讯作者:
K. Cao
Ling Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ling Liu', 18)}}的其他基金
EAGER: SaTC-EDU: Privacy Enhancing Techniques and Innovations for AI-Cybersecurity Cross Training
EAGER:SaTC-EDU:人工智能-网络安全交叉培训的隐私增强技术和创新
- 批准号:
2038029 - 财政年份:2020
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
CAREER: Nanoscale Thermal Transport in Hydrogen-Bonded Materials
职业:氢键材料中的纳米级热传输
- 批准号:
1946189 - 财政年份:2019
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
CAREER: Nanoscale Thermal Transport in Hydrogen-Bonded Materials
职业:氢键材料中的纳米级热传输
- 批准号:
1751610 - 财政年份:2018
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
TWC: Medium: Privacy Preserving Computation in Big Data Clouds
TWC:中:大数据云中的隐私保护计算
- 批准号:
1564097 - 财政年份:2016
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
NetSE: Medium: Privacy-Preserving Information Network and Services for Healthcare Applications
NetSE:媒介:用于医疗保健应用程序的隐私保护信息网络和服务
- 批准号:
0905493 - 财政年份:2009
- 资助金额:
$ 59.95万 - 项目类别:
Continuing Grant
SGER: Distributed Spatial Partitioning Algorithms for Scalable Processing of Mobile Location Queries
SGER:用于可扩展处理移动位置查询的分布式空间分区算法
- 批准号:
0640291 - 财政年份:2006
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
CT-ISG: Protecting Location Privacy in Location-Aware Computing: Architectures and Algorithms
CT-ISG:在位置感知计算中保护位置隐私:架构和算法
- 批准号:
0627474 - 财政年份:2006
- 资助金额:
$ 59.95万 - 项目类别:
Continuing Grant
A Peer to Peer Approach to Large Scale Information Monitoring
大规模信息监控的点对点方法
- 批准号:
0306488 - 财政年份:2003
- 资助金额:
$ 59.95万 - 项目类别:
Continuing Grant
System Support for Distributed Information Change Monitoring
分布式信息变更监控的系统支持
- 批准号:
9988452 - 财政年份:2000
- 资助金额:
$ 59.95万 - 项目类别:
Continuing Grant
相似海外基金
NESP MaC Project 3.11 - Multi- fishery collaboration to assess population abundances and post release survival of threatened sawfish in northern Australia, 2023-2026 (CSIRO, CDU)
NESP MaC 项目 3.11 - 多渔业合作,评估澳大利亚北部受威胁锯鳐的种群丰度和放生后存活率,2023-2026 年(CSIRO、CDU)
- 批准号:
global : 03343c53-b189-4ae3-a931-aca9735ccf13 - 财政年份:2023
- 资助金额:
$ 59.95万 - 项目类别:
Collaborative Research: NSF-CSIRO: HCC: Small: Understanding Bias in AI Models for the Prediction of Infectious Disease Spread
合作研究:NSF-CSIRO:HCC:小型:了解预测传染病传播的 AI 模型中的偏差
- 批准号:
2302969 - 财政年份:2023
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: RESILIENCE: Graph Representation Learning for Fair Teaming in Crisis Response
合作研究:NSF-CSIRO:RESILIENCE:危机应对中公平团队的图表示学习
- 批准号:
2303038 - 财政年份:2023
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
NSF-CSIRO: HCC: Small: From Legislations to Action: Responsible AI for Climate Change
NSF-CSIRO:HCC:小型:从立法到行动:负责任的人工智能应对气候变化
- 批准号:
2302785 - 财政年份:2023
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: HCC: Small: Understanding Bias in AI Models for the Prediction of Infectious Disease Spread
合作研究:NSF-CSIRO:HCC:小型:了解预测传染病传播的 AI 模型中的偏差
- 批准号:
2302968 - 财政年份:2023
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: Fair Sequential Collective Decision-Making
合作研究:NSF-CSIRO:公平顺序集体决策
- 批准号:
2303000 - 财政年份:2023
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: Fair Sequential Collective Decision-Making
合作研究:NSF-CSIRO:公平顺序集体决策
- 批准号:
2302999 - 财政年份:2023
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
NSF-CSIRO: Towards Interpretable and Responsible Graph Modeling for Dynamic Systems
NSF-CSIRO:迈向动态系统的可解释和负责任的图形建模
- 批准号:
2302786 - 财政年份:2023
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: HCC: Small: Understanding Bias in AI Models for the Prediction of Infectious Disease Spread
合作研究:NSF-CSIRO:HCC:小型:了解预测传染病传播的 AI 模型中的偏差
- 批准号:
2302970 - 财政年份:2023
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: RESILIENCE: Graph Representation Learning for Fair Teaming in Crisis Response
合作研究:NSF-CSIRO:RESILIENCE:危机应对中公平团队的图表示学习
- 批准号:
2303037 - 财政年份:2023
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant














{{item.name}}会员




