Collaborative Research: Advancing Quantum Education by Adaptively Addressing Misconceptions in Virtual Reality

合作研究:通过适应性地解决虚拟现实中的误解来推进量子教育

基本信息

  • 批准号:
    2302818
  • 负责人:
  • 金额:
    $ 20.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Quantum information science (QIS), which uses the laws of quantum physics to process and store information, is expected to broadly impact society through new developments in commerce, governance, privacy, employment, education, and other areas. However, a well-trained QIS workforce is necessary to make these advances. Unfortunately, QIS is a challenging, interdisciplinary field to learn. The goal of this project is to advance QIS education by using virtual reality (VR) and machine learning to adaptively address misconceptions about the field. The project will directly impact the education of approximately 120 undergraduate students learning QIS and has the potential to help transform how to motivate and prepare students for future quantum workforce positions.This project will leverage QubitVR, a VR application previously developed for learning foundational QIS concepts like superposition, measurement, and entanglement. As a first aim, the project will identify and predict QIS misconceptions by collecting data from a controlled, general-population study of QubitVR. This aim will include the development and validation of a new QIS Concept Introductory Test (QISCIT) for assessing learning outcomes. It will also involve labeling misconceptions in the collected data and the development and systematic evaluation of machine learning models based on VR tracking and input data for predicting when QubitVR learners are likely to have a misconception. As a second aim, the project will adaptively tutor QIS misconceptions by developing two intelligent tutoring versions of QubitVR: one that employs proactive conceptual scaffolds based on the machine learning models and one that employs reactive scaffolds based on conventional action-condition rules-based reasoning. This aim will involve one of few studies to directly compare machine learning-based and rules-based approaches to intelligent tutoring by comparing the two versions in a between-subject, general-population study. As a third aim, the project will ecologically validate the efficacy of QubitVR by collecting control, baseline, and adaptive tutoring data from undergraduate QIS courses in a longitudinal study. As a final aim, the project will result in the development of desktop and smartphone versions of QubitVR, which will be made openly available alongside the VR versions for broader educational impacts and to advance QIS education beyond the scope of this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子信息科学(QIS)利用量子物理定律来处理和存储信息,预计将通过商业、治理、隐私、就业、教育和其他领域的新发展广泛影响社会。然而,一个训练有素的QIS劳动力是必要的,使这些进步。不幸的是,QIS是一个具有挑战性的跨学科领域学习。该项目的目标是通过使用虚拟现实(VR)和机器学习来适应性地解决对该领域的误解,从而推进QIS教育。该项目将直接影响大约120名学习QIS的本科生的教育,并有可能帮助改变如何激励学生并为未来的量子劳动力职位做好准备。该项目将利用QubitVR,这是一款之前开发的VR应用程序,用于学习叠加,测量和纠缠等基础QIS概念。作为第一个目标,该项目将通过从QubitVR的受控一般人群研究中收集数据来识别和预测QIS误解。这一目标将包括开发和验证新的QIS概念入门测试(QISCIT),以评估学习成果。它还将涉及在收集的数据中标记误解,以及基于VR跟踪和输入数据开发和系统评估机器学习模型,以预测QubitVR学习者何时可能产生误解。作为第二个目标,该项目将通过开发QubitVR的两个智能辅导版本来自适应地辅导QIS误解:一个采用基于机器学习模型的主动概念支架,另一个采用基于传统动作条件规则推理的反应支架。这一目标将涉及为数不多的几项研究之一,通过在一项受试者间的普通人群研究中比较两个版本,直接比较基于机器学习和基于规则的智能辅导方法。作为第三个目标,该项目将通过在纵向研究中收集本科QIS课程的控制,基线和自适应辅导数据,从生态学角度验证QubitVR的有效性。作为最终目标,该项目将开发桌面和智能手机版本的QubitVR,并将与VR版本一起公开提供,以产生更广泛的教育影响,并推动QIS教育超出该项目的范围。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Kolodrubetz其他文献

Michael Kolodrubetz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Kolodrubetz', 18)}}的其他基金

CAREER: Floquet Route to Non-Equilibrium Phases of Matter in Cavity QED
职业: Floquet 路线到腔内 QED 物质的非平衡相
  • 批准号:
    1945529
  • 财政年份:
    2020
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414607
  • 财政年份:
    2024
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414606
  • 财政年份:
    2024
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342497
  • 财政年份:
    2024
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414608
  • 财政年份:
    2024
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414605
  • 财政年份:
    2024
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Continuing Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414604
  • 财政年份:
    2024
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Continuing Grant
Collaborative Research: Advancing Collaborations for Equity in Marine and Climate Sciences
合作研究:推进海洋和气候科学公平合作
  • 批准号:
    2314916
  • 财政年份:
    2023
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了