CAREER: Floquet Route to Non-Equilibrium Phases of Matter in Cavity QED
职业: Floquet 路线到腔内 QED 物质的非平衡相
基本信息
- 批准号:1945529
- 负责人:
- 金额:$ 50.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis CAREER award supports theoretical research and education into states of interacting light and matter that are not in usual steady states of equilibrium. The world around us is described by quantum mechanics, yet quantum mechanical phenomena are absent from our day-to-day life. This anomaly comes from the enormous complexity of the many interacting atoms that make up everyday objects, which wash out quantum effects to give the classical world. By isolating electrons and atoms from this complex environment, experimentalists have made enormous strides towards realizing quantum effects in increasing large and practical devices, which has become known as the second quantum revolution. This revolution will further the need for understanding quantum physics at its most fundamental level, which is the overarching goal of this CAREER award. The research will focus on a class of systems known as many-body cavity quantum electrodynamics (QED), which gives access to quantum properties of light and insight into the interaction between light and matter. Quantum mechanics tells us that light comes in individual units called photons, but conventional lasers contain so many photons that seeing quantum effects from each one is impossible. Cavity QED works by confining the light between two nearly perfect mirrors. One then prepares states where there are not millions or billions of photons in the cavity, but rather one or two. When the photon number is so low that individual photons can be seen, the photons behave quantum mechanically. Many-body cavity QED consists of these photons interacting with atoms that behave quantum mechanically as well. This project will study how these systems respond when they are kicked out of equilibrium, which is anticipated to give qualitatively new features due to the quantum mechanical push and pull between the light and the matter. These interactions should further provide applications down the road in a variety of quantum technologies, such as next-generation lasers and high-precision sensors.The research will be complemented by an educational program built around designing a virtual reality (VR) module allowing users to interact with simple quantum mechanical systems such as the hydrogen atom. By virtually shrinking the user to the size of the hydrogen atom, the VR module will enable them to interact with the quantum mechanical world directly. From an educational standpoint, the quantum VR module will provide a new route to learn about the fundamental rules of quantum mechanics without the mathematical overhead. This will create understanding and excitement which is relevant to training next-generation scientists and engineers, as quantum mechanics becomes an increasingly indispensable part of science and technology.TECHNICAL SUMMARYThis CAREER award supports theoretical research and education into nonequilibrium states of interacting light and matter. Time-periodic, or Floquet, driving is one of the most powerful tools for engineering quantum systems. Traditionally, a strong high frequency drive is used to modify the effective Hamiltonian, enabling the realization of artificial structures such as strong effective magnetic fields in neutral atoms. Recently, new phases of matter have been discovered that exploit the fundamentally nonequilibrium nature of the Floquet drive. Examples such as the Floquet time crystal were quickly realized after their theoretical discovery, opening the door for novel nonequilibrium routes to symmetry breaking.In practice, the Floquet drive is often done by microwave or optical photons. Confining these photons to a cavity, they may also be treated as quantum degrees of freedom, a paradigm known as many-body cavity quantum electrodynamics (QED). The semiclassical Floquet limit is obtained when the cavity photon occupation is large, but cavities afford the intriguing possibility of going to quantum limit by decreasing the photon number, thus accessing a different regime of strongly coupled quantum light and matter.This research will study the many-body cavity QED limit of nonequilibrium Floquet phases of matter. Doing so naturally leads to new nonequilibrium states of matter with anomalous behavior, which may be thought of as arising from competition between native local interactions and global interactions mediated by the cavity. The research will involve three broad directions: (1) understanding the competition between thermalization and many-body localization in a cavity, (2) demonstrating symmetry breaking states such as time crystals in the presence of the cavity, and (3) classifying topological states of matter coupled to one or more cavities, including quantized photon pumps.This work will bridge the active but mostly independent fields of many-body cavity QED and Floquet physics, providing a pathway to new phases of matter that lie between the limits that are often considered. The research team will extend the classification of nonequilibrium phases of matter, where anomalous states induced by the interplay of short- and long-range interactions remain particularly challenging. Experimental realizations will be explored in nitrogen vacancy centers, superconducting circuits, ultracold atoms, and trapped ions. The resulting entangled states of strongly coupled light and matter will have relevance to the fundamental science of quantum information and applications in quantum metrology.This research will be complemented by designing a virtual reality (VR) module allowing users to interact with simple quantum mechanical systems. The quantum VR will illustrate some key aspects of quantum mechanics, such as the wave nature of electrons, quantum measurements, and radiative decay, which have proved elusive to many learners. This is vital for both public science and technological applications as quantum technologies become increasingly relevant, lowering the barrier to entry for scientists, engineers, and members of the public. Feedback from users will serve as a seed for future development of visualization methods in a broader range of quantum systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimality of Lindblad unfolding in measurement phase transitions
测量相变中 Lindblad 展开的最优性
- DOI:10.1103/physrevb.107.l140301
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Kolodrubetz, Michael
- 通讯作者:Kolodrubetz, Michael
Inverted many-body mobility edge in a central qudit problem
中心 Qudit 问题中的倒置多体移动边缘
- DOI:10.1103/physrevb.105.l060303
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Koshkaki, Saeed Rahmanian;Kolodrubetz, Michael H.
- 通讯作者:Kolodrubetz, Michael H.
Quantized Floquet Topology with Temporal Noise
具有时间噪声的量化 Floquet 拓扑
- DOI:10.1103/physrevlett.127.270601
- 发表时间:2021
- 期刊:
- 影响因子:8.6
- 作者:Timms, Christopher I.;Sieberer, Lukas M.;Kolodrubetz, Michael H.
- 通讯作者:Kolodrubetz, Michael H.
Localization dynamics in a centrally coupled system
- DOI:10.1103/physrevb.103.134201
- 发表时间:2020-03
- 期刊:
- 影响因子:3.7
- 作者:Nathan Ng;Sebastian Wenderoth;Rajagopala Reddy Seelam;E. Rabani;H. Meyer;M. Thoss;M. Kolodrubetz
- 通讯作者:Nathan Ng;Sebastian Wenderoth;Rajagopala Reddy Seelam;E. Rabani;H. Meyer;M. Thoss;M. Kolodrubetz
Floquet engineering flat bands for bosonic fractional quantum Hall with superconducting circuits
- DOI:10.1103/physrevb.104.035427
- 发表时间:2020-09
- 期刊:
- 影响因子:3.7
- 作者:R. Ge;M. Kolodrubetz
- 通讯作者:R. Ge;M. Kolodrubetz
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Kolodrubetz其他文献
Michael Kolodrubetz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Kolodrubetz', 18)}}的其他基金
Collaborative Research: Advancing Quantum Education by Adaptively Addressing Misconceptions in Virtual Reality
合作研究:通过适应性地解决虚拟现实中的误解来推进量子教育
- 批准号:
2302818 - 财政年份:2023
- 资助金额:
$ 50.06万 - 项目类别:
Standard Grant
相似国自然基金
周期强驱动量子系统的Floquet动力学及
应用研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于周期性光场调控的新型Floquet能谷和拓扑材料的理论计算研究
- 批准号:12304538
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Floquet腔磁子学理论
- 批准号:62374087
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
Floquet调制下光学人工微结构中的拓扑类量子效应研究
- 批准号:12304370
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Floquet超导系统拓扑相的调控
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
复杂Floquet量子系统中的动力学与拓扑现象研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
利用Floquet调制增加光晶格钟原子相干时间的理论研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
用Floquet稳定性分析研究仿生推进中的自发对称性破缺现象
- 批准号:
- 批准年份:2021
- 资助金额:61 万元
- 项目类别:面上项目
Floquet共振调制倾斜光晶格体系中的新奇量子态及其动力学
- 批准号:12175315
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
超导量子电路系统中Floquet调控及量子相变机制的研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
ExpandQISE: Track 1: Light-controlled magnetism in Floquet-Bloch systems
ExpandQISE:轨道 1:Floquet-Bloch 系统中的光控磁性
- 批准号:
2329006 - 财政年份:2023
- 资助金额:
$ 50.06万 - 项目类别:
Standard Grant
Demonstration of Floquet engineering in quantum materials via time- and angle-resolved photoemission spectroscopy
通过时间和角度分辨光电子能谱演示量子材料中的 Floquet 工程
- 批准号:
580211-2022 - 财政年份:2022
- 资助金额:
$ 50.06万 - 项目类别:
Alliance Grants
Chemical Applications of Floquet State Spectroscopy
Floquet态光谱的化学应用
- 批准号:
2203290 - 财政年份:2022
- 资助金额:
$ 50.06万 - 项目类别:
Continuing Grant
The Effects of Interactions and Disorder in Topological Floquet Systems
拓扑小花系统中相互作用和无序的影响
- 批准号:
546848-2020 - 财政年份:2022
- 资助金额:
$ 50.06万 - 项目类别:
Postgraduate Scholarships - Doctoral
Floquet engineering of transition metal dichalcogenides via time-resolved photoemission
通过时间分辨光电子发射过渡金属二硫属化物的团簇工程
- 批准号:
577220-2022 - 财政年份:2022
- 资助金额:
$ 50.06万 - 项目类别:
Alliance Grants
Ãtude et contrôle optique de la dynamique des états de Floquet dans le graphène à l'aide de la spectroscopie de photoémission d'électrons résolue en angle et en temps.
图像中 Floquet 图案动态光学的研究与控制 摄影光谱辅助任务
- 批准号:
569557-2022 - 财政年份:2022
- 资助金额:
$ 50.06万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative research: Floquet-Bloch topological states in quantum Hall systems
合作研究:量子霍尔系统中的Floquet-Bloch拓扑态
- 批准号:
2104755 - 财政年份:2021
- 资助金额:
$ 50.06万 - 项目类别:
Continuing Grant
Floquet Theory for Stochastic Temporal Networks and Optimization Theory for the Design of Schedules for COVID-19
随机时间网络的 Floquet 理论和 COVID-19 时间表设计的优化理论
- 批准号:
2052720 - 财政年份:2021
- 资助金额:
$ 50.06万 - 项目类别:
Continuing Grant
The Effects of Interactions and Disorder in Topological Floquet Systems
拓扑小花系统中相互作用和无序的影响
- 批准号:
546848-2020 - 财政年份:2021
- 资助金额:
$ 50.06万 - 项目类别:
Postgraduate Scholarships - Doctoral
Collaborative research: Floquet-Bloch topological states in quantum Hall systems
合作研究:量子霍尔系统中的Floquet-Bloch拓扑态
- 批准号:
2104770 - 财政年份:2021
- 资助金额:
$ 50.06万 - 项目类别:
Continuing Grant