Collaborative Research: Identifying Hydrogen-Density Based Laws for Plasticity in Polycrystalline Materials
合作研究:确定基于氢密度的多晶材料塑性定律
基本信息
- 批准号:2303109
- 负责人:
- 金额:$ 27.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Hydrogen-induced degradation of structural materials is responsible for unexpected component failures across the aerospace, marine, energy, and infrastructure sectors. Similarly, concerns over hydrogen-induced embrittlement are a primary factor hindering the broader adoption of a hydrogen-based fuel economy. Current efforts to prevent these failures are complicated by challenges with accurately predicting hydrogen-related damage and its dependence on hydrogen concentration. This study will use a combined experimental and modeling approach to address these questions, resulting in new fundamental understanding of how hydrogen affects material behavior. This research will also benefit the national welfare in clean energy efforts by enabling the prediction of hydrogen-induced damage under conditions where hydrogen-assisted fracture is of concern. Moreover, in addition to training multiple graduate students, this project will actively engage in educational outreach with middle and high school students through dedicated events, lectures, and laboratory demonstrations.The researched study will establish how hydrogen affects plastic damage accumulation and leverage developed insights to create a hydrogen-sensitive crystal plasticity framework. First, conventional (mechanical testing) and advanced (high-energy X-ray diffraction) techniques will be employed to elucidate the effect of hydrogen concentration on the deformation behavior of pure single crystal and polycrystal Ni under monotonic and cyclic loading conditions. Second, this dataset will be leveraged to derive consistent hydrogen-sensitive laws for crystallographic slip and hardening that incorporate hydrogen effects on backstress development and dynamic recovery, enabling use for a wide range of hydrogen concentrations and loading conditions. Third, these deformation laws will then be integrated into a crystal plasticity framework, which will undergo validation using both experimental mechanical testing data and spatial distributions of microstructure-scale elastic strains via electron backscatter diffraction techniques to demonstrate model efficacy. The researched study will have broad impact as the hydrogen-informed crystal plasticity framework will be critical to supporting a hydrogen-based fuel economy. Additionally, all experimental data from this effort will be made available to the research community. Middle and high school students will get exposure and insight into critical issues for hydrogen embrittlement based on interactive Virtual Labs, case studies, and hands-on laboratory investigations that illustrate hydrogen’s effect on deformation behavior and potential component failure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
结构材料的氢降解导致整个航空航天,海洋,能源和基础设施部门的意外组成失败。同样,对氢引起的封闭的担忧是阻碍更广泛采用基于氢的燃油经济性的主要因素。当前的防止这些故障的努力使挑战变得复杂,可以准确预测与氢相关的损伤及其对氢浓度的依赖。这项研究将使用一种组合的实验和建模方法来解决这些问题,从而对氢如何影响材料行为有了新的基本了解。这项研究还将通过在氢辅助断裂的条件下预测氢诱导的损害,从而使国家福利在清洁能源努力中受益。此外,除了培训多个研究生外,该项目还将通过专门的活动,讲座和实验室演示积极与中学和高中生进行教育宣传。研究的研究将确定氢如何影响塑料损害的积累和杠杆发展的见解,以创建氢气敏感的晶体可塑性框架。首先,将采用常规(机械测试)和高级(高能X射线衍射)技术来阐明在单调和环状载荷条件下纯氢浓度对纯单晶和多晶Ni变形行为的影响。其次,该数据集将被利用以得出一致的氢敏感定律,以进行晶体学滑移和硬化,从而融合了氢对后卫的发育和动态恢复的影响,从而可以用于广泛的氢浓度和加载条件。第三,然后将这些变形定律整合到晶体可塑性框架中,该框架将通过电子反向散射技术同时使用实验机械测试数据和微结构级弹性菌株的空间分布进行验证,以证明模型效率。研究的研究将产生广泛的影响,因为氢化的晶体可塑性框架对于支持基于氢的燃油经济性至关重要。此外,这项工作的所有实验数据都将提供给研究社区。中学和高中生将获得基于互动虚拟实验室,案例研究和动手实验室调查的氢化的关键问题的暴露和洞察力,这些问题说明了氢对变形行为和潜在组件失败的影响。该奖项反映了NSF的法定任务,并通过使用该基金会的知识优点和广泛的criperia criperia criperia criperia criperia criperia criperia criperia criperia criperia criperia criperia criperia criperia rection the Coldition take rectiation。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Sangid其他文献
A Methodology for the Rapid Qualification of Additively Manufactured Materials Based on Pore Defect Structures
基于孔隙缺陷结构的增材制造材料快速鉴定方法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.3
- 作者:
Krzysztof S. Stopka;Andrew Desrosiers;A. Andreaco;Michael Sangid - 通讯作者:
Michael Sangid
Michael Sangid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Sangid', 18)}}的其他基金
CDS&E/Collaborative Research: Interpretable Machine Learning for Microstructure-Sensitive Fatigue Crack Initiation from Defects in Additive Manufactured Components
CDS
- 批准号:
2152938 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Investigation of Heterogeneous Deformation for Discontinuous Fiber Composites Through Combined Experiments and Modeling
通过实验和建模相结合研究不连续纤维复合材料的非均匀变形
- 批准号:
1662554 - 财政年份:2017
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
CAREER: Understanding Grain Level Residual Stresses Through Concurrent Modeling and Experiments
职业:通过并行建模和实验了解晶粒级残余应力
- 批准号:
1651956 - 财政年份:2017
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Design and Optimization of Powder Processed Ni-Base Superalloys via Grain Boundary Engineering
GOALI/合作研究:通过晶界工程设计和优化粉末加工镍基高温合金
- 批准号:
1334664 - 财政年份:2013
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
相似国自然基金
开放人机协作场景中的未知目标识别和人体运动预测方法研究
- 批准号:62203348
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
小样本困境下的多模态协作学习情感智能识别研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人体位姿感知与识别的协作机器人智能辅助技术研究
- 批准号:62203266
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
小样本困境下的多模态协作学习情感智能识别研究
- 批准号:62207033
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
开放人机协作场景中的未知目标识别和人体运动预测方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342936 - 财政年份:2024
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342937 - 财政年份:2024
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
Collaborative Research: Identifying and Evaluating Sites for Cosmic Explorer
合作研究:识别和评估宇宙探索者的地点
- 批准号:
2308989 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: Identifying Hydrogen-Density Based Laws for Plasticity in Polycrystalline Materials
合作研究:确定基于氢密度的多晶材料塑性定律
- 批准号:
2303108 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: Identifying and Evaluating Sites for Cosmic Explorer
合作研究:识别和评估宇宙探索者的地点
- 批准号:
2308985 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant