CDS&E/Collaborative Research: Interpretable Machine Learning for Microstructure-Sensitive Fatigue Crack Initiation from Defects in Additive Manufactured Components

CDS

基本信息

  • 批准号:
    2152938
  • 负责人:
  • 金额:
    $ 29.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Advancements in experimental and computational methods in recent decades have enabled production of a wealth of data for many engineering and science applications. However, these data do not readily translate into engineering knowledge. The objective of this project is to develop a machine-learning approach to facilitate this data-to-knowledge translation to better understand materials integrity. Such knowledge can help understand mechanical behaviors, such as fatigue, in additive manufactured components. The developed approach will improve the conventional process of materials certification, which is prohibitively expensive. The outcome of this project could potentially reduce consumer costs and increase adoption, which may ultimately advance the U.S. economy. To engage future generations and promote inclusion, K-12 students will interact with a user-friendly interface for hands-on demonstration of learning natural laws at the Utah Engineering Day and Purdue Space Day.Increasing the success and reliability of translating data into knowledge requires a shifted focus toward explainability and interpretability to perpetuate sound science and engineering principles. To this end, Genetic Programming based Symbolic Regression (GPSR) will be utilized to model fatigue damage in structural materials. GPSR models will then be trained using generated data sets from materials simulations, experiments, and guided by existing knowledge to discover new underlying mechanisms, i.e., knowledge. The research tasks will address a tractable means to model microstructure-dependent mechanisms into fatigue life predictions and supplant current practices. Specifically, GPSR models will be trained on a combination of high-energy X-ray diffraction microscopy and crystal plasticity finite element simulation data. The generated GPSR models will be a physics-regularized multiscale homogenization of pore-induced, microstructure-dependent fatigue crack initiation in an additive manufactured metal.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近几十年来,实验和计算方法的进步使许多工程和科学应用都可以生产大量数据。但是,这些数据不容易转化为工程知识。该项目的目的是开发一种机器学习方法来促进这种数据对知识翻译,以更好地了解材料的完整性。这些知识可以帮助理解加成型制成部分中的机械行为,例如疲劳。 开发的方法将改善材料认证的传统过程,这非常昂贵。该项目的结果可能有可能降低消费者成本并提高采用率,这最终可能会推动美国经济。为了吸引子孙后代并促进包容性,K-12学生将与用户友好的界面进行互动,以动手演示在犹他州工程日和普渡大学太空日学习自然法律。将数据转化为知识的成功和可靠性需要转移的焦点转移到解释性和解释性方面,以使声音科学和工程学的原理具有解释性。为此,将利用基于遗传编程的符号回归(GPSR)来模拟结构材料中的疲劳损伤。然后,将使用来自材料模拟,实验的生成数据集对GPSR模型进行培训,并以现有知识为指导,以发现新的潜在机制,即知识。研究任务将解决一种可拖动的手段,将微观结构依赖性机制建模为疲劳生活预测并取代当前实践。 具体而言,GPSR模型将通过高能X射线衍射显微镜和晶体可塑性有限元仿真数据的组合进行训练。生成的GPSR模型将是一个物理规范化的多尺度均质化,该杂质诱导的,微结构依赖的疲劳裂纹在增材制成的金属中启动。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力和更广泛影响的评估来通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Sangid其他文献

A Methodology for the Rapid Qualification of Additively Manufactured Materials Based on Pore Defect Structures
基于孔隙缺陷结构的增材制造材料快速鉴定方法

Michael Sangid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Sangid', 18)}}的其他基金

Collaborative Research: Identifying Hydrogen-Density Based Laws for Plasticity in Polycrystalline Materials
合作研究:确定基于氢密度的多晶材料塑性定律
  • 批准号:
    2303109
  • 财政年份:
    2023
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
CAREER: Understanding Grain Level Residual Stresses Through Concurrent Modeling and Experiments
职业:通过并行建模和实验了解晶粒级残余应力
  • 批准号:
    1651956
  • 财政年份:
    2017
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
Investigation of Heterogeneous Deformation for Discontinuous Fiber Composites Through Combined Experiments and Modeling
通过实验和建模相结合研究不连续纤维复合材料的非均匀变形
  • 批准号:
    1662554
  • 财政年份:
    2017
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Design and Optimization of Powder Processed Ni-Base Superalloys via Grain Boundary Engineering
GOALI/合作研究:通过晶界工程设计和优化粉末加工镍基高温合金
  • 批准号:
    1334664
  • 财政年份:
    2013
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245298
  • 财政年份:
    2023
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
  • 批准号:
    2302618
  • 财政年份:
    2023
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: 3-D Stellar Hydrodynamics of Convective Penetration and Convective Boundary Mixing in Massive Stars
合作研究:CDS
  • 批准号:
    2309102
  • 财政年份:
    2023
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了