CAREER: Emerging Challenges in Wave Turbulence Theory

职业:波浪湍流理论中的新挑战

基本信息

  • 批准号:
    2303146
  • 负责人:
  • 金额:
    $ 43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-12-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Wave turbulence (WT) is a general physical phenomenon describing the nonlinear dynamical interactions of waves far from thermal equilibrium. Examples of wave turbulence occur in classical surface water waves and also in quantum dynamical systems involving a Bose-Einstein condensate (BEC). Even though wave fields describing the processes of random wave interactions in nature are enormously diverse, there is a common mathematical framework that models and describes the dynamics of spectral energy transfer through probability densities associated with weakly non-linear interactions in quantum or classical wave systems. The probability densities are solutions of wave kinetic (WK) equations, whose nonlocal interaction operators are of kinetic type. This project aims to tackle open challenges in the theory of nonlinear waves via the study of the associated wave turbulence theory. An integral part of the project is its educational component and the opportunities to involve students from all levels in the research. To this end, the principal investigator will organize summer schools for underrepresented and disabled K-12 students, design graduate courses on Partial Differential Equations, Wave Turbulence and Statistical Physics, and organize an undergraduate and graduate research internship program of excellence and a mathematics-physics conference for young researchers. In addition, the principal investigator will participate in the NSF RTG SMU summer undergraduate research program, with participants from both SMU and Texas Rio Grande Valley University (a Hispanic-serving institution) as well as the SMU Hamilton Undergraduate Research Scholars and the SMU Undergraduate Research Assistant Programs. This project concentrates on three main topics in WT theory. The first topic is to study the rigorous justification of 3-wave kinetic equations, by the Feynman diagrammatic approach. The second topic is to establish a mathematical foundation for the Garrett-Munk spectrum of the ocean, using the renormalization group method. The third topic is the proof of the finite time formation of singularities of solutions to the finite temperature BEC system, with the addition of a new, previously missing, collision operator derived by Yves Pomeau and the principal investigator. Several ideas from kinetic theory, dispersive equations, oceanography, and quantum mechanics will be combined to study the proposed problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
波浪湍流是描述远离热平衡的波浪之间的非线性动力学相互作用的一种普遍物理现象。波动湍流的例子出现在经典的表面水波和涉及玻色-爱因斯坦凝聚体(BEC)的量子动力学系统中。尽管描述自然界中随机波相互作用过程的波场是非常不同的,但有一个共同的数学框架来建模和描述通过与量子或经典波系统中的弱非线性相互作用相关的概率密度来传递光谱能量的动力学。概率密度是波动动力学(WK)方程的解,其非局域相互作用算符是动态型的。该项目旨在通过对伴生波浪湍流理论的研究来解决非线性波浪理论中的开放挑战。该项目的一个组成部分是它的教育部分,以及让各个层次的学生参与研究的机会。为此,首席调查员将为代表不足和残疾的K-12学生组织暑期学校,设计偏微分方程、波动湍流和统计物理的研究生课程,并组织本科生和研究生的优秀实习计划和青年研究人员的数学-物理会议。此外,首席研究员将参加NSF RTG SMU暑期本科生研究计划,参与者来自SMU和德克萨斯州里奥格兰德山谷大学(一所拉美裔服务机构),以及SMU汉密尔顿本科生研究学者和SMU本科生研究助理计划。这个项目集中在小波理论的三个主要主题上。第一个主题是用费曼图解方法研究三波运动方程的严格证明。第二个主题是利用重整化群方法为海洋的Garrett-Munk谱建立一个数学基础。第三个主题是证明有限温度BEC系统解的奇性的有限时间形成,增加了由Yves Pomeau和主要研究者导出的一个新的、先前丢失的碰撞算子。来自动力学理论、色散方程、海洋学和量子力学的几个想法将被结合起来研究提出的问题。这个奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A deep learning approximation of non-stationary solutions to wave kinetic equations
波动动力学方程非平稳解的深度学习近似
  • DOI:
    10.1016/j.apnum.2022.12.010
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Walton, Steven;Tran, Minh-Binh;Bensoussan, Alain
  • 通讯作者:
    Bensoussan, Alain
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Minh-Binh Tran其他文献

On the dynamics of finite temperature trapped Bose gases
  • DOI:
    10.1016/j.aim.2017.12.007
  • 发表时间:
    2018-02-05
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Soffer, Avy;Minh-Binh Tran
  • 通讯作者:
    Minh-Binh Tran
A structure preserving scheme for the Kolmogorov–Fokker–Planck equation
  • DOI:
    10.1016/j.jcp.2016.11.009
  • 发表时间:
    2017-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Erich L. Foster;Jérôme Lohéac;Minh-Binh Tran
  • 通讯作者:
    Minh-Binh Tran
On the wave turbulence theory: ergodicity for the elastic beam wave equation
  • DOI:
    10.1007/s00209-025-03734-6
  • 发表时间:
    2025-04-05
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Benno Rumpf;Avy Soffer;Minh-Binh Tran
  • 通讯作者:
    Minh-Binh Tran
Parallel Schwarz Waveform Relaxation Algorithm for an N-Dimensional Semilinear Heat Equation
  • DOI:
    10.1051/m2an/2013121
  • 发表时间:
    2010-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minh-Binh Tran
  • 通讯作者:
    Minh-Binh Tran
Controlling the rates of a chain of harmonic oscillators with a point Langevin thermostat
用点朗之万热浴控制一系列谐波振荡器的速率
  • DOI:
    10.1016/j.jde.2025.01.054
  • 发表时间:
    2025-05-05
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Amirali Hannani;Minh-Nhat Phung;Minh-Binh Tran;Emmanuel Trélat
  • 通讯作者:
    Emmanuel Trélat

Minh-Binh Tran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Minh-Binh Tran', 18)}}的其他基金

Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306379
  • 财政年份:
    2024
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
Questions in Wave Turbulence and Quantum Kinetic Theories
波湍流和量子动力学理论中的问题
  • 批准号:
    2305523
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
CAREER: Emerging Challenges in Wave Turbulence Theory
职业:波浪湍流理论中的新挑战
  • 批准号:
    2044626
  • 财政年份:
    2021
  • 资助金额:
    $ 43万
  • 项目类别:
    Continuing Grant
Questions in Wave Turbulence and Quantum Kinetic Theories
波湍流和量子动力学理论中的问题
  • 批准号:
    1854453
  • 财政年份:
    2018
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
Questions in Wave Turbulence and Quantum Kinetic Theories
波湍流和量子动力学理论中的问题
  • 批准号:
    1814149
  • 财政年份:
    2018
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant

相似海外基金

eFutures: Electronic systems technology for emerging challenges
eFutures:应对新兴挑战的电子系统技术
  • 批准号:
    EP/X039218/1
  • 财政年份:
    2023
  • 资助金额:
    $ 43万
  • 项目类别:
    Research Grant
SaTC: CORE: Small: Emerging Security Challenges and a Solution Framework for FPGA-accelerated Cloud Computing
SaTC:CORE:小型:新兴安全挑战和 FPGA 加速云计算的解决方案框架
  • 批准号:
    2247059
  • 财政年份:
    2023
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
Emerging Challenges in NBS: Benefits and Harms of Receiving Uncertain Prognoses After NBS
NBS 中的新挑战:NBS 后收到不确定预测的好处和坏处
  • 批准号:
    10584779
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
Emerging Challenges in NBS: Benefits and Harms of Receiving Uncertain Prognoses After NBS
NBS 中的新挑战:NBS 后收到不确定预测的好处和坏处
  • 批准号:
    10708198
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
NSERC Industrial Research Chair in Water Treatment - Addressing Emerging Challenges in Drinking Water Treatment and Supply
NSERC 水处理工业研究主席 - 解决饮用水处理和供应中的新挑战
  • 批准号:
    147477-2017
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
    Industrial Research Chairs
DMS-EPSRC Collaborative Research: Advancing Statistical Foundations and Frontiers from and for Emerging Astronomical Data Challenges
DMS-EPSRC 合作研究:推进统计基础和前沿,应对新出现的天文数据挑战
  • 批准号:
    EP/W015080/1
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
    Research Grant
Solving emerging environmental challenges of the hydroelectric sector in partnership with utilities and Indigenous communities
与公用事业公司和原住民社区合作,解决水电行业新出现的环境挑战
  • 批准号:
    560330-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
    Alliance Grants
Challenges and Emerging Issues in Official Statistics and Survey Methodology
官方统计和调查方法中的挑战和新出现的问题
  • 批准号:
    RGPIN-2020-04345
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven logistics and distribution planning: Emerging trends and pandemic-related challenges
数据驱动的物流和配送规划:新兴趋势和流行病相关挑战
  • 批准号:
    RGPIN-2022-03530
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: D3: Addressing Emerging Data-Induced Challenges in Embedded and Real-Time Systems
职业:D3:解决嵌入式和实时系统中新出现的数据引发的挑战
  • 批准号:
    2230968
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了