CSEDI: Integrated seismic, geodynamic, and mineral physics studies of scatterers and other multi-scale structures in Earth’s lower mantle

CSEDI:地球下地幔散射体和其他多尺度结构的综合地震、地球动力学和矿物物理研究

基本信息

  • 批准号:
    2303148
  • 负责人:
  • 金额:
    $ 63.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-15 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

The behavior of materials in the Earth’s mantle constrains the flows that drive plate tectonics. Voluminous volcanic eruptions driven by deep mantle sources are thought to have caused global environmental changes. Dramatic compositional and thermal changes occur at the core-mantle boundary (CMB), about 3000 km below the Earth’s surface. These changes exert a primary influence on the cooling of the planet. They also influence the core dynamics, the Earth’s magnetic field, and mantle thermal convection. Yet, understanding the dynamics of the deep Earth is not trivial. Indeed, multidisciplinary efforts and state-of-the art techniques are required to tackle the complexity of the Earth system. Here, the researchers investigate enigmatic features observed at the core-mantle boundary. To unveil their origin, the team combines expertise in seismology, geodynamics, and experimental mineral physics. The researchers carry out experiments at the extreme pressures prevailing in the mantle. They measure the properties of materials anticipated to exist in of oceanic crustal material sinking to the CMB using powerful x-rays and infrared light at national synchrotron facilities. Taking advantage of recent advances in computational facilities, they simulate the interaction of candidate oceanic crustal materials with deep-mantle materials brought together by tectonic forces acting throughout Earth’s history to produce complex structures in the deep mantle. The results of the models will be compared with seismic observations of the Earth’s interior, testing our understanding of the dynamics of the deep Earth. The project provides support for the training of graduate students at the California Institute of Technology and fosters international collaboration with Australia. Seismologists have revealed that the mantle side of the CMB is extraordinarily heterogeneous, with km-scale fine structure that could harbor distinct chemical reservoirs. Thermal and chemical heterogeneity, solid-solid phase transitions, elastic anisotropy, variable viscosity, and melting are probably all required to explain the observed complexity. With expertise in seismology, geodynamics and experimental mineral physics, the team connects the atomic scale to the tectonic scale as linked to the temporal dimension through dynamics. This is accomplished through the measurement of the thermoelastic properties of deep Earth phases as compared to seismically observed structures predicted by mantle dynamics arising from reconstructions of Earth’s plate tectonic history. The researchers will conduct a systematic study of the Pacific large low seismic velocity province (LLSVP) and proximal surroundings. They use whole seismograms compared against synthetics generated from enhanced tomographic models and thermo-chemical convection models. The models integrate plate tectonic reconstructions constrained by observations and account for materials’ physical properties, including elastic tensors and rheological properties. The experiments assess the sources of the seismic signatures of candidate deep hydrous phases in subducted slab. They include: (1) shear-wave speed measurements using inelastic x-ray scattering techniques; and (2) thermal equation of state and stability constraints using x-ray diffraction and synchrotron infrared spectroscopy at lower mantle conditions. The study addresses fundamental questions, such as: can the presence of subducted slabs deform LLSVPs into seismically resolvable 3-D shapes with distinctive anisotropy and affect D" topography? If hydrous phases can be transported into the lowermost mantle, are they seismically detectable and do they play a role in the stability of a thermo-chemical pile? This work will be accomplished through the training of three graduate students in cutting-edge techniques, and the collaborative project will enhance partnerships with Australian National University. Outreach activities through the Earthquake Fellows Program will include high school students from backgrounds underrepresented in the geosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地幔中物质的行为限制了驱动板块构造的流动。由深地幔源驱动的大量火山喷发被认为是造成全球环境变化的原因。剧烈的成分和热变化发生在核幔边界(CMB),大约3000公里以下的地球表面。这些变化对地球的冷却产生了主要影响。它们还影响着地核动力学、地球磁场和地幔热对流。然而,了解地球深处的动力学并不是微不足道的。事实上,需要多学科的努力和最先进的技术来解决地球系统的复杂性。在这里,研究人员调查了在核幔边界观察到的神秘特征。为了揭开它们的起源,该团队结合了地震学,地球动力学和实验矿物物理学的专业知识。研究人员在地幔中普遍存在的极端压力下进行实验。他们在国家同步加速器设施上使用强大的X射线和红外光测量预计存在于海洋地壳物质下沉到CMB中的物质的性质。利用计算设施的最新进展,他们模拟了候选海洋地壳物质与深地幔物质的相互作用,这些物质是由贯穿地球历史的构造力作用在一起的,从而在深地幔中产生复杂的结构。模型的结果将与地球内部的地震观测结果进行比较,以检验我们对地球深部动力学的理解。该项目为加州理工学院的研究生培训提供支助,并促进与澳大利亚的国际合作。 地震学家已经揭示,CMB的地幔一侧是非常不均匀的,具有公里级的精细结构,可能含有不同的化学储层。热和化学的不均匀性,固-固相变,弹性各向异性,可变粘度和熔化可能都需要解释所观察到的复杂性。凭借地震学、地球动力学和实验矿物物理学方面的专业知识,该团队将原子尺度与构造尺度联系起来,并通过动力学将其与时间维度联系起来。这是通过测量地球深部相的热弹性性质来实现的,与地震观测到的结构相比,地震观测到的结构是由地球板块构造历史重建所产生的地幔动力学预测的。研究人员将对太平洋大型低地震速度区(LLSVP)及其邻近环境进行系统研究。他们使用完整的地震图与增强层析成像模型和热化学对流模型生成的合成图进行比较。这些模型整合了受观测约束的板块构造重建,并考虑了材料的物理特性,包括弹性张量和流变特性。实验评估了俯冲板片中候选深部含水相的地震特征的来源。 它们包括:(1)利用非弹性x射线散射技术测量剪切波速度;(2)利用下地幔条件下的x射线衍射和同步加速器红外光谱学测量热状态方程和稳定性约束。这项研究解决了一些基本问题,例如:俯冲板片的存在是否会使LLSVP变形为具有明显各向异性的地震可分辨的3-D形状,并影响D”地形?如果含水相可以被输送到地幔的最低层,它们是否可以被地震探测到,它们是否在热化学堆的稳定性中起作用?这项工作将通过对三名研究生进行尖端技术培训来完成,合作项目将加强与澳大利亚国立大学的伙伴关系。通过地震研究员计划开展的外联活动将包括来自地球科学背景不足的高中生。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Jackson其他文献

NBER WORKING PAPER SERIES STILL WORTH THE TRIP? SCHOOL BUSING EFFECTS IN BOSTON AND NEW YORK
NBER 工作论文系列仍然值得一游吗?
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joshua D Angrist;Guthrie Gray;Clemence M. Idoux;Parag A. Pathak;E. Heying;Jennifer Jackson;Jim Shen
  • 通讯作者:
    Jim Shen
Clinician perspectives of social connectedness in an adjunctive group program for youth with severe and complex depression: a qualitative analysis
临床医生对患有严重和复杂抑郁症的青少年辅助团体计划中社会联系的看法:定性分析
  • DOI:
    10.1080/13284207.2023.2231603
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Nicole J. Moore;Abi Brooker;S. Cotton;Kieran M O'Gorman;Jennifer Jackson;B. McKechnie;S. Rice
  • 通讯作者:
    S. Rice
Risk Factor Stratification for COPD Exacerbation in an Outpatient Population Resulting in Acute Healthcare Resource Utilization
  • DOI:
    10.1378/chest.1389192
  • 发表时间:
    2012-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Furqan Shoaib Siddiqi;Rachael Hauser;Peg Bicker;Jennifer Jackson
  • 通讯作者:
    Jennifer Jackson
Are You Smarter Than Your Smart Pump?
  • DOI:
    10.1016/j.jopan.2013.04.045
  • 发表时间:
    2013-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daisy Fischer;Meredith Pattin;Jennifer Jackson
  • 通讯作者:
    Jennifer Jackson
Effects of Shoreline Development on Composition and Physical Structure of Plants in a South Carolina High Marsh
  • DOI:
    10.1007/s12237-013-9659-3
  • 发表时间:
    2013-06-22
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Zofia Noe;Jennifer Jackson;John J. Hutchens;Keith Walters;James O. Luken;Kevin S. Godwin
  • 通讯作者:
    Kevin S. Godwin

Jennifer Jackson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer Jackson', 18)}}的其他基金

Melting of compressed iron-alloys using a multi-technique approach
使用多种技术方法熔化压缩铁合金
  • 批准号:
    2212068
  • 财政年份:
    2022
  • 资助金额:
    $ 63.97万
  • 项目类别:
    Standard Grant
CSEDI: Integrated seismic, geodynamic, and mineral physics studies of multi-scale structures in the lowermost mantle
CSEDI:最下地幔多尺度结构的地震、地球动力学和矿物物理综合研究
  • 批准号:
    2009935
  • 财政年份:
    2020
  • 资助金额:
    $ 63.97万
  • 项目类别:
    Continuing Grant
AGEP EAGER: Exploring Conditions for Systemic Equity Transformation that Advance Women and Minority STEM Faculty
AGEP EAGER:探索促进女性和少数族裔 STEM 教师发展的系统性公平转型条件
  • 批准号:
    1935469
  • 财政年份:
    2019
  • 资助金额:
    $ 63.97万
  • 项目类别:
    Standard Grant
Melting of compressed iron-alloys by monitoring atomic dynamics
通过监测原子动力学熔化压缩铁合金
  • 批准号:
    1727020
  • 财政年份:
    2017
  • 资助金额:
    $ 63.97万
  • 项目类别:
    Standard Grant
CSEDI: Integrated seismic, geodynamic, and mineral physics studies of the deepest lower mantle
CSEDI:最深下地幔的综合地震、地球动力学和矿物物理研究
  • 批准号:
    1600956
  • 财政年份:
    2016
  • 资助金额:
    $ 63.97万
  • 项目类别:
    Continuing Grant
Melting of compressed iron-alloys by monitoring atomic dynamics
通过监测原子动力学熔化压缩铁合金
  • 批准号:
    1316362
  • 财政年份:
    2013
  • 资助金额:
    $ 63.97万
  • 项目类别:
    Standard Grant
CAREER: Investigations on the elastic and vibrational properties of mantle silicates and oxides
职业:研究地幔硅酸盐和氧化物的弹性和振动特性
  • 批准号:
    0956166
  • 财政年份:
    2010
  • 资助金额:
    $ 63.97万
  • 项目类别:
    Continuing Grant
Teaching Excellence At College for High Achievement in West Virginia (TEACH-WV)
西弗吉尼亚州卓越教学学院 (TEACH-WV)
  • 批准号:
    0833111
  • 财政年份:
    2009
  • 资助金额:
    $ 63.97万
  • 项目类别:
    Standard Grant
Elasticity of Selected Deep Earth Phases Under Simultaneous High P-T Conditions Using Nuclear Resonant Inelastic X-ray Scattering
使用核共振非弹性 X 射线散射在同时高 P-T 条件下选定的深层地球相的弹性
  • 批准号:
    0711542
  • 财政年份:
    2007
  • 资助金额:
    $ 63.97万
  • 项目类别:
    Continuing Grant

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
焦虑症小鼠模型整合模式(Integrated) 行为和精细行为评价体系的构建
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Development of Integrated Building Seismic Response Simulation Coupling Structural and Non-structural Components
结构与非结构构件耦合的集成建筑地震反应模拟开发
  • 批准号:
    23K19171
  • 财政年份:
    2023
  • 资助金额:
    $ 63.97万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Mantle dynamics beneath the North Atlantic region from integrated seismic imaging using new regional seafloor data and global datasets
使用新的区域海底数据和全球数据集通过综合地震成像研究北大西洋地区下方的地幔动力学
  • 批准号:
    NE/X000060/1
  • 财政年份:
    2023
  • 资助金额:
    $ 63.97万
  • 项目类别:
    Research Grant
Collaborative Research: A new subsurface framework for the Cascadia subduction zone derived from integrated analyses of the CASIE21 long-offset multi-channel seismic experiment
合作研究:根据 CASIE21 长偏移距多道地震实验的综合分析得出卡斯卡迪亚俯冲带的新地下框架
  • 批准号:
    2217468
  • 财政年份:
    2022
  • 资助金额:
    $ 63.97万
  • 项目类别:
    Standard Grant
Collaborative Research: A new subsurface framework for the Cascadia subduction zone derived from integrated analyses of the CASIE21 long-offset multi-channel seismic experiment
合作研究:根据 CASIE21 长偏移距多道地震实验的综合分析得出卡斯卡迪亚俯冲带的新地下框架
  • 批准号:
    2217467
  • 财政年份:
    2022
  • 资助金额:
    $ 63.97万
  • 项目类别:
    Standard Grant
Collaborative Research: A new subsurface framework for the Cascadia subduction zone derived from integrated analyses of the CASIE21 long-offset multi-channel seismic experiment
合作研究:根据 CASIE21 长偏移距多道地震实验的综合分析得出卡斯卡迪亚俯冲带的新地下框架
  • 批准号:
    2217465
  • 财政年份:
    2022
  • 资助金额:
    $ 63.97万
  • 项目类别:
    Standard Grant
Collaborative Research: A new subsurface framework for the Cascadia subduction zone derived from integrated analyses of the CASIE21 long-offset multi-channel seismic experiment
合作研究:根据 CASIE21 长偏移距多道地震实验的综合分析得出卡斯卡迪亚俯冲带的新地下框架
  • 批准号:
    2217466
  • 财政年份:
    2022
  • 资助金额:
    $ 63.97万
  • 项目类别:
    Standard Grant
Development of an Integrated Repair Index Considering Seismic Capacity, Recovery costs and Economic loss of Reinforced Concrete Buildings and Application to Next Generation Seismic Design
考虑钢筋混凝土建筑抗震能力、恢复成本和经济损失的综合修复指数的制定及其在下一代抗震设计中的应用
  • 批准号:
    21KK0074
  • 财政年份:
    2021
  • 资助金额:
    $ 63.97万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Integrated Response Control Method using TMD and Cable to Improve the Seismic Performance of Spatial Structures
利用TMD和电缆提高空间结构抗震性能的综合响应控制方法
  • 批准号:
    20K04774
  • 财政年份:
    2020
  • 资助金额:
    $ 63.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of an integrated Borehole Geodetic and Seismic Sensor: Project Completion
集成钻孔大地测量和地震传感器的开发:项目完成
  • 批准号:
    1955127
  • 财政年份:
    2020
  • 资助金额:
    $ 63.97万
  • 项目类别:
    Standard Grant
CSEDI: Integrated seismic, geodynamic, and mineral physics studies of multi-scale structures in the lowermost mantle
CSEDI:最下地幔多尺度结构的地震、地球动力学和矿物物理综合研究
  • 批准号:
    2009935
  • 财政年份:
    2020
  • 资助金额:
    $ 63.97万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了