Development of an integrated Borehole Geodetic and Seismic Sensor: Project Completion
集成钻孔大地测量和地震传感器的开发:项目完成
基本信息
- 批准号:1955127
- 负责人:
- 金额:$ 14.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Seismometers measure the shaking of the ground caused by earthquakes, ranging in intensity from tiny tremors undetectable by humans to large damaging earthquakes that pose a hazard to structures and people. It is the very small shaking from nearby sources, or the ultra-low frequency vibration following large events that cause the Earth to ring like a bell for many days afterward, that are difficult to capture. We are constantly trying to improve seismometers to be able to record this wide range of signals. Studying them can provide much information about what is inside the Earth. Seismic waves are the "light" that lets us see inside the Earth and seismometers are the "eyes" that let us create images of the internal Earth structure. In addition to shaking, earthquakes and related phenomena cause slow, gradual deformation of Earth's crust. To detect these deformations, extremely precise sensors are needed. Two types of deformation are often searched for: a very slight change in the position of the ground with respect to local vertical, called "tilt," and elongation or compression of the ground, called "strain." These are not unrelated, but the types of signals caused by tectonic activity are normally extremely small – measured by parts per billion in both tilt and strain. This Division of Erath Science Instrumentation and Facilities Program award supports development of a highly sensitive optical detection method and instrument to measure the motion of masses suspended by pendulums or a spring in a housing cemented into the bottom of a borehole. Optical fibers send laser light down to the sensor housing and return the light after it has been reflected from mirrors attached to the masses. By analyzing this light with electronics and a small computer located outside the borehole, the researchers can detect motions of the masses comparable to the diameter of individual atoms, and therefore detect both small seismic shaking and deformation of the ground caused by earthquake-related activity. As the investigators learn more about earthquake processes, the better are the chances of one day making precise forecasts of where and when they might occur.Support from this award will allow for fabrication and installation of a borehole system that utilizes optical-fiber interferometry to provide in one borehole: (a) a broadband vertical seismometer/gravimeter, (b) a broadband two-component horizontal seismometer/tiltmeter, and (c) a low-noise vertical long baseline strainmeter. The combined system will be able to measure vertical and horizontal ground velocities, gravity, tilt, and strain with sensitivities that compare favorably with any existing system over time scales from 10 Hz to many days; the downhole components are entirely passive, giving a long instrument lifetime and resistance to high downhole temperatures. The instrument is to be installed in an existing borehole at Pinon Flat Observatory for testing and comparison with the seismic and strain systems already operated there. The combined instrument promises an alternative to multi-instrument observations from independent seismometers, GPS receivers, gravimeters, tiltmeters and strain meters. The seismic observations are anticipated to meet the current requirements of Global Seismographic Network stations and geodetic measurements would offer lower noise observations than GPS at periods shorter than weeks. Target applications could include studies of the dynamics of crustal deformation including slow slip events, continuous and episodic slip, and other Earth movements that are known to occur but which do not generate damaging earthquakes. A deployed instrument could help to understand the effects of magmatic and subsurface fluid dynamics (e.g., hydrocarbon extraction and CO2 sequestration) on crustal deformation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地震仪测量地震引起的地面震动,强度从人类无法察觉的微小震动到对建筑物和人员构成危险的大破坏性地震不等。 很难捕捉到的是来自附近震源的非常小的震动,或者是大事件之后的超低频振动,这些振动会导致地球在之后的许多天里像钟声一样响起。 我们一直在努力改进地震仪,使其能够记录如此广泛的信号。 研究它们可以提供关于地球内部的许多信息。 地震波是让我们看到地球内部的“光”,地震仪是让我们创建地球内部结构图像的“眼睛”。 除了震动,地震和相关的现象也会引起地壳缓慢而渐进的变形。 为了检测这些变形,需要非常精确的传感器。 通常要寻找两种变形:地面相对于当地垂直线的位置发生非常微小的变化,称为“倾斜”;地面的伸长或压缩,称为“应变”。“这些并非无关,但由构造活动引起的信号类型通常非常小-以倾斜和应变的十亿分之一测量。 该奖项支持开发高灵敏度的光学检测方法和仪器,以测量由水泥固定在钻孔底部的外壳中的弹簧或弹簧悬挂的质量的运动。 光纤将激光向下发送到传感器外壳,并在光从连接到质量块的镜子反射后返回。 通过使用电子设备和位于钻孔外的小型计算机分析这种光,研究人员可以检测到与单个原子直径相当的质量运动,从而检测到地震相关活动引起的地面小地震震动和变形。随着研究人员对地震过程的了解越来越多,有一天对地震发生的地点和时间做出精确预测的机会就越大。该奖项的支持将允许制造和安装一个钻孔系统,该系统利用光纤干涉测量法在一个钻孔中提供:(a)宽频带垂直地震仪/重力仪,(B)宽频带双分量水平地震仪/倾斜仪,以及(c)低噪声垂直长基线应变仪。 该组合系统将能够测量垂直和水平地面速度、重力、倾斜和应变,其灵敏度在10 Hz到许多天的时间范围内优于任何现有系统;井下组件完全是无源的,使仪器寿命长,并能抵抗井下高温。该仪器将安装在Pinon Flat天文台现有的钻孔中,用于测试和与那里已经运行的地震和应变系统进行比较。 这一组合仪器有望取代独立地震仪、全球定位系统接收器、重力仪、倾斜仪和应变仪的多仪器观测。 预计地震观测将满足全球地震观测网台站目前的要求,而大地测量将提供比全球定位系统更低的噪音观测,观测周期短于数周。 目标应用可包括研究地壳变形的动力学,包括缓慢滑动事件、连续和偶发滑动以及已知会发生但不会产生破坏性地震的其他地球运动。 部署的仪器可以帮助了解岩浆和地下流体动力学的影响(例如,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Zumberge其他文献
Seafloor motion from offshore man-made structures using satellite radar images – A case study in the Adriatic Sea
- DOI:
10.1016/j.rse.2024.114543 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:
- 作者:
Fanghui Deng;Mark Zumberge - 通讯作者:
Mark Zumberge
Near full locking on the shallow megathrust of the central Cascadia subduction zone revealed by GNSS-Acoustic
全球导航卫星系统 - 声学揭示卡斯卡迪亚俯冲带中部浅部大型逆冲断层近乎完全锁定
- DOI:
10.1016/j.epsl.2025.119463 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:5.100
- 作者:
John B. DeSanto;David A. Schmidt;Mark Zumberge;Glenn Sasagawa;C. David Chadwell - 通讯作者:
C. David Chadwell
Precise tilt measurement by seafloor borehole tiltmeters at the Nankai Trough subduction zone
南海海槽俯冲带海底钻孔倾斜仪精确测量倾斜
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Shuhei Tsuji;Eiichiro Araki;T. Yokobiki;S. Nishida;Y. Machida;Mark Zumberge;Keisuke Takahashi - 通讯作者:
Keisuke Takahashi
Mark Zumberge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Zumberge', 18)}}的其他基金
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
- 批准号:
2314271 - 财政年份:2024
- 资助金额:
$ 14.95万 - 项目类别:
Continuing Grant
Collaborative Research: Meshed GNSS-Acoustic Array Design for Lower-Cost Dense Observation Fields
合作研究:用于低成本密集观测场的网状 GNSS 声学阵列设计
- 批准号:
2321299 - 财政年份:2024
- 资助金额:
$ 14.95万 - 项目类别:
Continuing Grant
Collaborative Research: Development of an Autonomous Ocean Observatory Node
合作研究:自主海洋观测站节点的开发
- 批准号:
2322491 - 财政年份:2023
- 资助金额:
$ 14.95万 - 项目类别:
Continuing Grant
Collaborative Research: Near-Trench Community Geodetic Experiment
合作研究:近海沟群落大地测量实验
- 批准号:
2232638 - 财政年份:2023
- 资助金额:
$ 14.95万 - 项目类别:
Continuing Grant
Development of a Plate-scale Distributed Strain Sensing System: A Candidate for Earthquake Early Warning
板级分布式应变传感系统的开发:地震预警的候选系统
- 批准号:
2218876 - 财政年份:2022
- 资助金额:
$ 14.95万 - 项目类别:
Standard Grant
Development of GNSS-Acoustic Surveying for Shallow Water
浅水 GNSS 声学测量的发展
- 批准号:
2216876 - 财政年份:2022
- 资助金额:
$ 14.95万 - 项目类别:
Continuing Grant
Collaborative Research/EAGER: Toward Long-Distance Ocean and Seismic Sensing on Optical Telecommunications Infrastructure
合作研究/EAGER:在光通信基础设施上实现长距离海洋和地震传感
- 批准号:
2211068 - 财政年份:2022
- 资助金额:
$ 14.95万 - 项目类别:
Standard Grant
Collaborative Research: Constraints on Interseismic Locking near the Trench on the Oregon Segment of the Cascadia Subduction Zone Using Seafloor Geodesy (GNSS-A)
合作研究:利用海底大地测量 (GNSS-A) 对卡斯卡迪亚俯冲带俄勒冈段海沟附近的震间锁定进行约束
- 批准号:
2126396 - 财政年份:2021
- 资助金额:
$ 14.95万 - 项目类别:
Standard Grant
Collaborative Research: Continental Shelf Geodesy: Continued Development of a Low Cost Sea Floor Geodetic System Based on GPS
合作研究:大陆架大地测量:持续开发基于 GPS 的低成本海底大地测量系统
- 批准号:
2023714 - 财政年份:2020
- 资助金额:
$ 14.95万 - 项目类别:
Standard Grant
Collaborative Research: Deployment of Seafloor Optical Fiber Strainmeters for the Detection of Slow Slip Events
合作研究:部署海底光纤应变仪来检测慢滑移事件
- 批准号:
2004259 - 财政年份:2020
- 资助金额:
$ 14.95万 - 项目类别:
Continuing Grant
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
焦虑症小鼠模型整合模式(Integrated)
行为和精细行为评价体系的构建
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
HER2特异性双抗原表位识别诊疗一体化探针研制与临床前诊疗效能研究
- 批准号:82372014
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于贝叶斯网络可靠度演进模型的城市雨水管网整体优化设计理论研究
- 批准号:51008191
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Integrated Lithium Niobate Femtosecond Mode-Locked Lasers and Ultrafast Photonic Systems
职业:集成铌酸锂飞秒锁模激光器和超快光子系统
- 批准号:
2338798 - 财政年份:2024
- 资助金额:
$ 14.95万 - 项目类别:
Continuing Grant
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 14.95万 - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 14.95万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 14.95万 - 项目类别:
Standard Grant
I-Corps: Translation potential of 3D electronics manufacturing by integrated 3D printing and freeform laser induction
I-Corps:通过集成 3D 打印和自由形式激光感应实现 3D 电子制造的转化潜力
- 批准号:
2412186 - 财政年份:2024
- 资助金额:
$ 14.95万 - 项目类别:
Standard Grant
Integrated Computational and Mechanistic Investigation on New Reactivity and Selectivity in Emerging Enzymatic Reactions
新兴酶反应中新反应性和选择性的综合计算和机理研究
- 批准号:
2400087 - 财政年份:2024
- 资助金额:
$ 14.95万 - 项目类别:
Standard Grant
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
- 批准号:
2423820 - 财政年份:2024
- 资助金额:
$ 14.95万 - 项目类别:
Standard Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
- 批准号:
2328281 - 财政年份:2024
- 资助金额:
$ 14.95万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 14.95万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 14.95万 - 项目类别:
Standard Grant