Quivers in quantum symmetry: a path algebra framework for algebras in tensor categories

量子对称性中的颤动:张量范畴代数的路径代数框架

基本信息

  • 批准号:
    2303334
  • 负责人:
  • 金额:
    $ 29.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

The concept of "symmetry" has been recognized since time immemorial, because of its ubiquitous presence in the natural world. Symmetries can be immediately visually apparent, as with mirror images or circles, but also may be more abstract. For example, solutions to an equation may have symmetries that help us better understand them, or molecules may have symmetries that affect how they interact with one another. There are a number of ways to use the language of mathematics to formalize the concept of symmetry, and some of these lie within the field of Abstract Algebra. Informally, this project will work with symmetries of an object computationally, somewhat like familiar number systems used in everyday life, but more complicated. The project lies within the newly evolving field of "quantum symmetry" which allows for greater flexibility in the concept, at the expense of losing some intuition. However, it can be formalized just as rigorously using mathematics, specifically in the language of Hopf algebras and tensor categories. The proposed work broadens participation in mathematics by having specific subprojects for a diverse group of doctoral students, which will prepare them for their own research careers, in academics, business, industry, or government.More precisely, this project extends the foundations of representation theory of finite dimensional associative algebras to the setting of algebras in tensor categories. The PI will particularly focus on finite tensor categories and expects the strongest results for fusion categories. The proposed extension of quivers and their representations to the setting of finite tensor categories will accommodate richer underlying structures than just vector spaces, such as the action of a group by automorphisms or a Lie algebras by derivations, as well as vector spaces graded by groups, and even non-classical structures where the objects have fractional (Frobenius-Perron) dimension, and thus cannot be considered to have an underlying vector space in any natural way. A specific class of tensor categories which will receive detailed attention are representation categories of Hopf algebras. This includes many examples of interest across broad areas of mathematics, such as quantum groups. This project is jointly funded by the Algebra and Number Theory Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自远古时代以来,“对称性”的概念由于其在自然世界中的普遍存在而得到认可。 与镜像或圆圈一样,对称性可以立即在视觉上明显,但也可能更加抽象。 例如,方程解决方案可能具有对称性,可以帮助我们更好地理解它们,或者分子可能具有影响它们彼此相互作用的对称性。有多种方法可以使用数学语言正式化对称性的概念,其中一些位于抽象代数的领域内。从非正式的角度来看,该项目将与对象计算的对称性合作,有点像日常生活中使用的熟悉的数字系统,但更复杂。该项目属于“量子对称性”的新发展的领域,该领域允许在概念上更加灵活,以失去一些直觉为代价。 但是,可以使用数学,特别是在Hopf代数和张量类别的语言中,可以同样严格地将其形式化。拟议的工作通过为多样化的博士生拥有特定的副标题,从而扩大了数学的参与,这将为自己的研究职业做好准备,在学者,商业,工业或政府中为自己的研究职业做好准备。更确切地说,该项目将有限的二级辅助性代数理论的基础扩展到了Algebras of Algebras类别的环境。 PI将特别关注有限的张量类别,并期望融合类别的结果最强。 The proposed extension of quivers and their representations to the setting of finite tensor categories will accommodate richer underlying structures than just vector spaces, such as the action of a group by automorphisms or a Lie algebras by derivations, as well as vector spaces graded by groups, and even non-classical structures where the objects have fractional (Frobenius-Perron) dimension, and thus cannot be considered to have an underlying矢量空间以任何自然的方式。一类特定的张量类别将受到详细关注,这是HOPF代数的表示类别。这包括许多在数学广泛领域(例如量子组)中引起的兴趣的例子。该项目由代数和数理论计划和启发竞争性研究的既定计划共同资助(EPSCOR)。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的审查标准的评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan Kinser其他文献

Representations of algebras

Ryan Kinser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan Kinser', 18)}}的其他基金

Collaborative Research: Conference on Geometric Methods in Representation Theory 2018 and 2019
协作研究:2018年和2019年表示论中的几何方法会议
  • 批准号:
    1839720
  • 财政年份:
    2018
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
Conference on Geometric Methods in Representation Theory; November 18-20, 2017; University of Iowa
表示论中的几何方法会议;
  • 批准号:
    1644393
  • 财政年份:
    2016
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant

相似国自然基金

拓扑金属中的非局域量子输运与受对称性保护的拓扑量子相变研究
  • 批准号:
    12304062
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
时空对称性与内禀轨道角动量相关问题研究
  • 批准号:
    12375084
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
量子对称在算子代数中若干分析问题和应用
  • 批准号:
    12371124
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
对称性保护的新奇量子态研究
  • 批准号:
    12305033
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PT对称性在量子信息和量子计算中的应用
  • 批准号:
    12371135
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
  • 批准号:
    2345836
  • 财政年份:
    2024
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
Topological quantum matter and crystalline symmetry
拓扑量子物质和晶体对称性
  • 批准号:
    2345644
  • 财政年份:
    2024
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Continuing Grant
Symmetry and measurement: a foundation for semi-local quantum physics
对称性与测量:半定域量子物理的基础
  • 批准号:
    EP/Y000099/1
  • 财政年份:
    2023
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Research Grant
Using symmetry to enhance quantum batteries and heat engines
利用对称性增强量子电池和热机
  • 批准号:
    23K03290
  • 财政年份:
    2023
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CQIS: RUI: Quantum Resources via Free Operation Symmetry
CQIS:RUI:通过自由操作对称的量子资源
  • 批准号:
    2309157
  • 财政年份:
    2023
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了