Topological quantum matter and crystalline symmetry

拓扑量子物质和晶体对称性

基本信息

  • 批准号:
    2345644
  • 负责人:
  • 金额:
    $ 55.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2028-03-31
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARYThis award supports theoretical research on understanding new kinds of phenomena that can arise due to the presence of crystalline symmetry in quantum systems. Quantum materials typically exist in a crystalline environment due to the periodic arrangement of atoms. Hence, the material under question often also has a crystallographic symmetry that includes rotations, reflections, and translations of the space, meaning that the crystal structure remains the same under such operations. In the presence of these symmetries, quantum materials can host new types of physical phenomena. For example, if a quantum material has a rotational symmetry, then it is possible for certain kinds of crystal defects to accumulate quantized electric charges that are fractions of the charge of the electron. The project will incorporate methods from mathematical physics and quantum field theory to further our ability to characterize and classify the robust, quantized properties exhibited by quantum systems with crystalline symmetry. The project will also develop methods to experimentally probe these phenomena in a variety of settings, including two-dimensional quantum materials, photonic systems, and noisy intermediate scale quantum computers.The project has a strong educational component, as it fully supports a graduate student. The PI will further develop and publicly release lecture notes for his special topics graduate courses on topological quantum matter and on machine learning. In addition, the PI will remain active in various forms of outreach, at the high school level through outreach programs at his institution and through an active social media presence. Ongoing industry collaborations will further broaden the societal impacts of the project through its applications to quantum computing.TECHNICAL SUMMARYThis award supports theoretical research in developing the theory of topological phases of matter with crystalline symmetry. This theory will apply in the regime of strong interactions, and thus go beyond single-particle band theory, using the tools of topological quantum field theory. The project has several different components and builds directly on significant progress from the last project period. In the first component, the PI’s group will extend their theories of two-dimensional strongly interacting crystalline topological phases, which applied to the case orientation-preserving wallpaper groups, to include all 17 wallpaper groups. The second component is to perform numerical calculations for models of fractional Chern insulators and quantum spin liquids, specifically using projected quantum wave functions, to understand the emergence of new crystalline symmetry-protected topological invariants and their physical properties. These include invariants obtained through partial symmetry operations and through fractional charges accumulated at lattice defects. The third component is to develop methods to experimentally probe the PI’s recently discovered crystalline topological invariants in two-dimensional quantum materials, photonic systems, and noisy intermediate scale quantum computers. Finally, the theoretical advances will be extended to develop a theory of critical phenomena enhanced with crystalline symmetry.The project has a strong educational component, as it fully supports a graduate student. The PI will further develop and publicly release lecture notes for his special topics graduate courses on topological quantum matter and on machine learning. In addition, the PI will remain active in various forms of outreach, at the high school level through outreach programs at his institution and through an active social media presence. Ongoing industry collaborations will further broaden the societal impacts of the project through its applications to quantum computing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结该奖项支持关于理解由于量子系统中晶体对称性的存在而可能出现的新类型现象的理论研究。由于原子的周期性排列,量子材料通常存在于晶体环境中。因此,所讨论的材料通常也具有晶体对称性,包括空间的旋转、反射和平移,这意味着在这些操作下晶体结构保持不变。在这些对称性的存在下,量子材料可以容纳新类型的物理现象。例如,如果量子材料具有旋转对称性,那么某些类型的晶体缺陷就可能积累量子电荷,这些电荷是电子电荷的一小部分。该项目将结合数学物理和量子场论的方法,以进一步提高我们描述和分类具有晶体对称性的量子系统所表现出的健壮、量子化属性的能力。该项目还将开发在各种环境下实验探索这些现象的方法,包括二维量子材料、光子系统和嘈杂的中型量子计算机。该项目具有很强的教育成分,因为它完全支持一名研究生。PI将进一步开发并公开发布他关于拓扑量子物质和机器学习的专题研究生课程的讲稿。此外,PI将通过其机构的外联方案和积极的社交媒体存在,在高中一级继续积极开展各种形式的外联活动。正在进行的行业合作将通过该项目在量子计算中的应用,进一步扩大该项目的社会影响。技术总结该奖项支持发展具有晶体对称性的物质的拓扑相理论的理论研究。这一理论将应用于强相互作用区域,从而超越了单粒子能带理论,使用了拓扑量子场理论的工具。该项目有几个不同的组成部分,直接建立在上一个项目期取得的重大进展的基础上。在第一个组成部分中,Pi的群将他们的二维强相互作用晶体拓扑相的理论推广到所有17个壁纸群,该理论适用于保壳壁纸群。第二部分是对分数级陈氏绝缘体和量子自旋液体模型进行数值计算,特别是使用投影量子波函数,以了解新的晶体对称性保护的拓扑不变量的出现及其物理性质。这些不变量包括通过部分对称操作和通过在晶格缺陷处积累的分数电荷获得的不变量。第三个部分是开发实验方法来探索PI最近在二维量子材料、光子系统和嘈杂的中型量子计算机中发现的晶体拓扑不变量。最后,理论上的进展将被扩展到发展一种用晶体对称性增强的临界现象理论。该项目有很强的教育成分,因为它完全支持研究生。PI将进一步开发并公开发布他关于拓扑量子物质和机器学习的专题研究生课程的讲稿。此外,PI将通过其机构的外联方案和积极的社交媒体存在,在高中一级继续积极开展各种形式的外联活动。正在进行的行业合作将通过其在量子计算中的应用来进一步扩大该项目的社会影响。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maissam Barkeshli其他文献

Why Warmup the Learning Rate? Underlying Mechanisms and Improvements
为什么要预热学习率?
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dayal Singh Kalra;Maissam Barkeshli
  • 通讯作者:
    Maissam Barkeshli
Anomalies in (2+1)D fermionic topological phases and (3+1)D path integral state sums for fermionic SPTs
费米子 SPT 的 (2 1)D 费米子拓扑相和 (3 1)D 路径积分状态和的异常
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Srivatsa Tata;Ryohei Kobayashi;Daniel Bulmash;Maissam Barkeshli
  • 通讯作者:
    Maissam Barkeshli

Maissam Barkeshli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maissam Barkeshli', 18)}}的其他基金

CAREER: Symmetry, Topology, and Transport in Strongly Interacting Quantum Many-Body Systems
职业:强相互作用量子多体系统中的对称性、拓扑和输运
  • 批准号:
    1753240
  • 财政年份:
    2018
  • 资助金额:
    $ 55.08万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
高温气化过程中煤灰矿物质演变规律的量子化学计算与实验研究
  • 批准号:
    50906055
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
广义Besov函数类上的几个逼近特征
  • 批准号:
    10926056
  • 批准年份:
    2009
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
基于量子点多色荧光细胞标志谱型的CTC鉴别与肿瘤个体化诊治的研究
  • 批准号:
    30772507
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
驻波场驱动的量子相干效应的研究
  • 批准号:
    10774058
  • 批准年份:
    2007
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
量子计算电路的设计和综合
  • 批准号:
    60676020
  • 批准年份:
    2006
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
半导体物理中的非线性偏微分方程组
  • 批准号:
    10541001
  • 批准年份:
    2005
  • 资助金额:
    4.0 万元
  • 项目类别:
    专项基金项目
量子点技术对细胞表面蛋白和受体在体内分布的研究
  • 批准号:
    30570686
  • 批准年份:
    2005
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

Exploring the twist paradigm in topological and interacting quantum matter
探索拓扑和相互作用量子物质中的扭曲范式
  • 批准号:
    RGPIN-2022-03720
  • 财政年份:
    2022
  • 资助金额:
    $ 55.08万
  • 项目类别:
    Discovery Grants Program - Individual
Topological phases of matter for quantum computation
用于量子计算的物质拓扑相
  • 批准号:
    DE220100625
  • 财政年份:
    2022
  • 资助金额:
    $ 55.08万
  • 项目类别:
    Discovery Early Career Researcher Award
State-of-the-art magnetometry for quantum matter, functional materials, topological magnets and superconductors
用于量子物质、功能材料、拓扑磁体和超导体的最先进的磁力测量
  • 批准号:
    EP/V054031/1
  • 财政年份:
    2022
  • 资助金额:
    $ 55.08万
  • 项目类别:
    Research Grant
Quantum Symmetries of Topological Phases of Matter
物质拓扑相的量子对称性
  • 批准号:
    2205962
  • 财政年份:
    2022
  • 资助金额:
    $ 55.08万
  • 项目类别:
    Standard Grant
Quantum Field Theory for Topological Phases of Matter
物质拓扑相的量子场论
  • 批准号:
    2210182
  • 财政年份:
    2022
  • 资助金额:
    $ 55.08万
  • 项目类别:
    Continuing Grant
Topological and Dynamical Phenomena in Condensed Matter Systems Detected by Quantum Entanglement
量子纠缠检测凝聚态系统中的拓扑和动力学现象
  • 批准号:
    2001181
  • 财政年份:
    2021
  • 资助金额:
    $ 55.08万
  • 项目类别:
    Continuing Grant
Topological and C*-Algebraic Quantum Matter
拓扑和 C*-代数量子物质
  • 批准号:
    2055501
  • 财政年份:
    2021
  • 资助金额:
    $ 55.08万
  • 项目类别:
    Standard Grant
Topological aspects of quantum many-body systems: Symmetry-protected ingappable phases and anomalies
量子多体系统的拓扑方面:对称保护的不可应用相和异常
  • 批准号:
    19K14608
  • 财政年份:
    2019
  • 资助金额:
    $ 55.08万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Free-particle descriptions of topological quantum matter and many-body localisation
拓扑量子物质和多体局域化的自由粒子描述
  • 批准号:
    EP/R020612/1
  • 财政年份:
    2018
  • 资助金额:
    $ 55.08万
  • 项目类别:
    Research Grant
Generating Synthetic Gauge Fields in Dysprosium Quantum Gas for Topological Matter
在镝量子气体中生成拓扑物质的合成规范场
  • 批准号:
    487306-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 55.08万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了