SBIR Phase I: Machine Learning Actors to Improve Connectedness across Remote Teams

SBIR 第一阶段:机器学习参与者改善远程团队之间的连通性

基本信息

  • 批准号:
    2303389
  • 负责人:
  • 金额:
    $ 27.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

The broader impact /commercial potential of this Small Business Innovation Research (SBIR) Phase I project is to develop machine learning-powered actors (ML actors) that facilitate social encounters between friends, strangers, classmates, and coworkers in user-generated spaces across the Metaverse. The shift towards virtual work, learning, and socialization has been accompanied by significant societal disruption. Over the past few years, people across the United States reported increasing levels of loneliness and isolation. Building off research that shows games are a powerful tool for team building, and non-player characters have a significant impact on building empathy, this project uses ML actors as the building blocks of free-to-play, multiplayer, cooperative games designed to bring remote workers together socially. This Small Business Innovation Research (SBIR) Phase I project aims to address the challenge of making ML actors viable for user-generated worlds. In order to be effective in the Metaverse, ML actors will need to navigate unfamiliar settings, player dialogue, and behaviors that are hard to predict. Characters will need to be trained on vast quantities of data with some human supervision. This project seeks to prove that ML actors can be trained from large amounts of data by users of no technical background and those actors can then be deployed in a virtual environment in which they are responsive to their environment and player choices. This project has three main steps: 1) learning a large multimodal hierarchical task network from thousands of movie scripts and game logs, 2) connecting that model to a character in a 3D environment, and 3) testing a game with remote teams to gauge efficacy and enjoyability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个小企业创新研究(SBIR)第一阶段项目的更广泛的影响/商业潜力是开发机器学习驱动的演员(ML演员),促进朋友,陌生人,同学和同事之间的社交接触,在Metaverse中的用户生成的空间。向虚拟工作、学习和社交的转变伴随着重大的社会破坏。在过去的几年里,美国各地的人们报告说,孤独和孤立的程度越来越高。基于研究表明游戏是团队建设的强大工具,非玩家角色对建立同理心有着重大影响,该项目使用ML演员作为免费游戏,多人游戏,合作游戏的构建模块,旨在将远程工作人员聚集在一起。这个小型企业创新研究(SBIR)第一阶段项目旨在解决使ML参与者在用户生成的世界中可行的挑战。为了在Metaverse中发挥作用,机器学习参与者需要驾驭不熟悉的设置、玩家对话和难以预测的行为。角色将需要在一些人工监督下接受大量数据的训练。该项目旨在证明,没有技术背景的用户可以从大量数据中训练ML演员,然后这些演员可以部署在虚拟环境中,在虚拟环境中,他们可以响应他们的环境和玩家选择。该项目有三个主要步骤:1)从数千个电影脚本和游戏日志中学习大型多模式分层任务网络,2)将该模型连接到3D环境中的角色,和3)该奖项反映了NSF的法定使命,并被认为是值得通过评估使用基金会的智力价值和更广泛的支持。影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Orkin其他文献

Jeffrey Orkin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark Supercooled Phase Transition
  • 批准号:
    24ZR1429700
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ATLAS实验探测器Phase 2升级
  • 批准号:
    11961141014
  • 批准年份:
    2019
  • 资助金额:
    3350 万元
  • 项目类别:
    国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
  • 批准号:
    41802035
  • 批准年份:
    2018
  • 资助金额:
    12.0 万元
  • 项目类别:
    青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
  • 批准号:
    61675216
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于Phase-type分布的多状态系统可靠性模型研究
  • 批准号:
    71501183
  • 批准年份:
    2015
  • 资助金额:
    17.4 万元
  • 项目类别:
    青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
  • 批准号:
    51201142
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
  • 批准号:
    11101428
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
  • 批准号:
    19374069
  • 批准年份:
    1993
  • 资助金额:
    6.4 万元
  • 项目类别:
    面上项目

相似海外基金

SBIR Phase I: An inclusive machine learning-based digital platform to credential soft skills
SBIR 第一阶段:一个基于机器学习的包容性数字平台,用于认证软技能
  • 批准号:
    2317077
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
SBIR Phase I: Proximate Wind Forecasts: A New Machine Learning Approach to Increasing Wind Energy Production
SBIR 第一阶段:风力预测:增加风能产量的新机器学习方法
  • 批准号:
    2309367
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
SBIR Phase I: Sown To Grow - Measuring Growth in Trusting Relationships between Students and Educators with Natural Language Processing and Machine Learning Technologies
SBIR 第一阶段:播种成长 - 使用自然语言处理和机器学习技术衡量学生和教育工作者之间信任关系的增长
  • 批准号:
    2322340
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
SBIR Phase II: Quantification of Operative Performance via Simulated Surgery, Capacitive Sensing, and Machine Learning to Improve Surgeon Performance & Medical Device Develop
SBIR 第二阶段:通过模拟手术、电容传感和机器学习量化手术表现,以提高外科医生的表现
  • 批准号:
    2223976
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Cooperative Agreement
SBIR Phase II: A Novel Human Machine Interface for Assistive Robots
SBIR 第二阶段:辅助机器人的新型人机界面
  • 批准号:
    2223169
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Cooperative Agreement
SBIR Phase I: Predictive Analytics and Machine Learning Modeling for New Patient Cancer Referrals
SBIR 第一阶段:针对新癌症患者转诊的预测分析和机器学习建模
  • 批准号:
    2304498
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
SBIR Phase I: Using ChatGPT and Machine Learning to Power Positive Change among Justice Involved Youth
SBIR 第一阶段:利用 ChatGPT 和机器学习推动参与正义的青少年发生积极变化
  • 批准号:
    2333168
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
SBIR Phase II: Accelerating R&D through Streamlined Machine Learning Algorithms for Small Data Applications in Advanced Manufacturing
SBIR 第二阶段:加速 R
  • 批准号:
    2325045
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Cooperative Agreement
SBIR Phase I: Development of a Machine Learning System to Identify Streptococcal Pharyngitis with a Smartphone Image
SBIR 第一阶段:开发机器学习系统,通过智能手机图像识别链球菌性咽炎
  • 批准号:
    2304268
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
SBIR Phase I: Secure Image Recognition and Machine Learning Using Advanced Cryptography
SBIR 第一阶段:使用高级加密技术进行安全图像识别和机器学习
  • 批准号:
    2304348
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了