Hidden Symmetries: Internal and External Equivariance in Floer Homology
隐藏的对称性:Floer 同调中的内部和外部等变
基本信息
- 批准号:2303823
- 负责人:
- 金额:$ 18.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The central goal of this project is to investigate the shape of abstract structures in three and four dimensions. The study of such objects has formed a major area of research in mathematics, which has both drawn from and contributed to advances in theoretical physics. More broadly, ideas from the field of topology and geometry have influenced the language of data analysis, biology, and artificial intelligence. Here, the PI aims to investigate specific questions in three- and four-dimensional topology and develop tools for understanding these problems. As part of this program, the PI plans to develop connections and collaborations with other areas of mathematics and provide an accessible entry point to research for undergraduate and graduate students.The project will utilize Floer homology to study geometric questions involving knots, surfaces, and manifolds in three and four dimensions. The PI aims to expand the role of symmetry in Floer homology by exploring novel applications of equivariant Floer theory across a wide range of topological settings. Specific goals include understanding the structure of various cobordism and concordance groups, studying exotic phenomena, developing new sliceness obstructions, and investigating the action of satellite operators. The PI will also seek to relate different Floer-theoretic constructions with each other in order to better understand connections between these invariants.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的中心目标是研究三维和四维抽象结构的形状。对这些物体的研究已经形成了数学研究的一个主要领域,它既借鉴了理论物理学的进步,也为理论物理学的进步做出了贡献。更广泛地说,拓扑学和几何领域的思想影响了数据分析、生物学和人工智能的语言。在这里,PI旨在研究三维和四维拓扑中的具体问题,并开发理解这些问题的工具。作为该计划的一部分,PI计划与其他数学领域建立联系和合作,并为本科生和研究生提供一个可访问的研究切入点。该项目将利用flower同源性来研究几何问题,包括三维和四维的结、曲面和流形。PI旨在通过探索在广泛的拓扑设置中的等变花理论的新应用来扩展对称在花同调中的作用。具体目标包括了解各种协同和协调群的结构,研究外来现象,开发新的切片障碍,以及调查卫星运营商的行动。PI还将寻求将不同的花理论结构彼此联系起来,以便更好地理解这些不变量之间的联系。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irving Dai其他文献
Homology concordance and knot Floer homology
同源索引和结Floer同源性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:1.4
- 作者:
Irving Dai;Jennifer Hom;Matthew Stoffregen;L. Truong - 通讯作者:
L. Truong
The $(2,1)$-cable of the figure-eight knot is not smoothly slice
八字结的$(2,1)$线不平滑切片
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Irving Dai;Sungkyung Kang;Abhishek Mallick;Junghwan Park;Matthew Stoffregen - 通讯作者:
Matthew Stoffregen
On the Pin(2)-Equivariant Monopole Floer Homology of Plumbed 3-Manifolds
关于管道式 3 流形的 Pin(2)-等变单极子Floer 同调
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Irving Dai - 通讯作者:
Irving Dai
INVOLUTIVE HEEGAARD FLOER HOMOLOGY AND PLUMBED THREE-MANIFOLDS
包含式 Heegarard FLOER 同源性和管道式三歧管
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0.9
- 作者:
Irving Dai;Ciprian Manolescu - 通讯作者:
Ciprian Manolescu
Combinatorial Properties of Full-Flag Johnson Graphs
全旗约翰逊图的组合属性
- DOI:
10.1007/978-3-319-29516-9_10 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Irving Dai - 通讯作者:
Irving Dai
Irving Dai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irving Dai', 18)}}的其他基金
相似海外基金
REU Site: Research in Symmetries at the University of Kentucky
REU 网站:肯塔基大学对称性研究
- 批准号:
2349261 - 财政年份:2024
- 资助金额:
$ 18.38万 - 项目类别:
Continuing Grant
Geometric evolution of spaces with symmetries
具有对称性的空间的几何演化
- 批准号:
DP240101772 - 财政年份:2024
- 资助金额:
$ 18.38万 - 项目类别:
Discovery Projects
CAREER: Symmetries and Classical Physics in Machine Learning for Science and Engineering
职业:科学与工程机器学习中的对称性和经典物理学
- 批准号:
2339682 - 财政年份:2024
- 资助金额:
$ 18.38万 - 项目类别:
Continuing Grant
Lagrangian Multiforms for Symmetries and Integrability: Classification, Geometry, and Applications
对称性和可积性的拉格朗日多重形式:分类、几何和应用
- 批准号:
EP/Y006712/1 - 财政年份:2024
- 资助金额:
$ 18.38万 - 项目类别:
Fellowship
Characterization of Systematic Effects in Ultracold Neutron Tests of Fundamental Symmetries
基本对称性超冷中子测试中系统效应的表征
- 批准号:
2310015 - 财政年份:2023
- 资助金额:
$ 18.38万 - 项目类别:
Standard Grant
Research in Novel Symmetries of Quantum Field Theory and String Theory
量子场论和弦理论的新对称性研究
- 批准号:
2310279 - 财政年份:2023
- 资助金额:
$ 18.38万 - 项目类别:
Continuing Grant
Categorical Symmetries of Operator Algebras
算子代数的分类对称性
- 批准号:
2247202 - 财政年份:2023
- 资助金额:
$ 18.38万 - 项目类别:
Standard Grant
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
- 批准号:
EP/X01276X/1 - 财政年份:2023
- 资助金额:
$ 18.38万 - 项目类别:
Fellowship
CAREER: Low-energy Nuclear Physics and Fundamental Symmetries with Neutrons and Cryogenic Technologies
职业:低能核物理以及中子和低温技术的基本对称性
- 批准号:
2232117 - 财政年份:2023
- 资助金额:
$ 18.38万 - 项目类别:
Continuing Grant
Polymorphism in the symmetries of gastric pouch arrangements in the sea anemone Diadumene lineata
海葵胃袋排列对称性的多态性
- 批准号:
22KJ3132 - 财政年份:2023
- 资助金额:
$ 18.38万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




