Conference: Southeastern Lie Theory Workshop Series

会议:东南谎言理论研讨会系列

基本信息

  • 批准号:
    2303977
  • 负责人:
  • 金额:
    $ 4.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-15 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

This project supports participation in two workshops: "Combinatorial Representation Theory of Algebras and Applications" (May 12-14, 2023: North Carolina State University) and "Quantum Groups, Quantum Symmetric Pairs and their Categorifications" (March 1-3, 2024, University of Virginia) in the Southeastern Lie Theory Workshop Series. The Southeast Lie Theory Consortium and Workshop Series will continue to stimulate and enhance regional research collaboration in Lie theory and representation theory in the Southeastern United State. Featured expository talks at the workshops by leading researchers will provide an avenue for graduate students and early-career researchers to enhance their research programs. The opportunities for mathematical interactions and mentorship during the conferences will foster a strong regional tradition of research and education. The proposed workshops are broadly concerned with the representation theory of Lie algebras, quantum groups, and related algebraic structures. These topics have numerous connections to theoretical physics, number theory, algebraic geometry, and other disciplines. Research in these fields involves the study of a broad range of algebraic, combinatorial, or categorical objects, a sampling of which includes: quantized enveloping algebras, quantum function algebras, Kac--Moody Lie algebras, Hecke algebras, canonical bases and crystal bases, vertex operator algebras, Hall algebras, quivers, cluster algebras, Hopf algebras, and Khovanov-Lauda-Rouquier algebras. In general, the representation theory of quantized Kac--Moody Lie algebras and its accompanying categorical and geometric developments has taken on a significant role not only within Lie theory but also in other areas of mathematics and physics such as combinatorics, group theory, number theory, integrable systems, low-dimensional topology and conformal field theory. The workshop series website is https://www.math.lsu.edu/~pramod/selie/. The website for the May 2023 Workshop is https://sites.google.com/ncsu.edu/selieworkshop2023.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目支持参加东南李氏理论研讨会系列中的两个研讨会:“代数和应用的组合表示理论”(2023年5月12日至14日:北卡罗来纳州立大学)和“量子群、量子对称对及其分类”(2024年3月1日至3日,弗吉尼亚大学)。东南测谎理论联盟和研讨会系列将继续促进和加强美国东南部在测谎理论和代表性理论方面的区域研究合作。主要研究人员在研讨会上的专题说明性演讲将为研究生和职业生涯早期的研究人员提供一个加强他们研究计划的途径。会议期间的数学互动和指导机会将培养强大的区域研究和教育传统。拟议的工作坊广泛涉及李代数的表示理论、量子群和相关的代数结构。这些主题与理论物理、数论、代数几何和其他学科有许多联系。这些领域的研究涉及到对广泛的代数、组合或范畴对象的研究,其样本包括:量子化包络代数、量子函数代数、Kac-Moody李代数、Hecke代数、正则基和晶基、顶点算子代数、Hall代数、箭图、簇代数、Hopf代数和Khovanov-Lauda-Rouquier代数。一般而言,量子化Kac-Moody李代数的表示理论及其伴随的范畴和几何发展不仅在李理论中,而且在数学和物理的其他领域,如组合学、群论、数论、可积系统、低维拓扑和共形场论中都具有重要的作用。研讨会系列网站为https://www.math.lsu.edu/~pramod/selie/.2023年5月研讨会的网站是https://sites.google.com/ncsu.edu/selieworkshop2023.This奖,反映了国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kailash Misra其他文献

Superior monogamy and polygamy relations and estimates of concurrence
  • DOI:
    10.1140/epjp/s13360-025-06029-1
  • 发表时间:
    2025-02-05
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Yue Cao;Naihuan Jing;Kailash Misra;Yiling Wang
  • 通讯作者:
    Yiling Wang

Kailash Misra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kailash Misra', 18)}}的其他基金

Southeastern Lie Theory Workshop Series
东南谎言理论工作坊系列
  • 批准号:
    1801804
  • 财政年份:
    2018
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Standard Grant
Southeastern Lie Theory Workshop Series; Algebraic and Combinatorial Representation Theory (2015: NCSU); Algebraic Groups, Quantum Groups and Geometry (2016: UVA)
东南谎言理论研讨会系列;
  • 批准号:
    1544407
  • 财政年份:
    2015
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Continuing Grant
Southeastern Lie Theory Workshop Series
东南谎言理论工作坊系列
  • 批准号:
    1206255
  • 财政年份:
    2012
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences-Deformation Theory of Algebras and Modules- May 16-20, 2011
NSF/CBMS 数学科学区域会议 - 代数和模的变形理论 - 2011 年 5 月 16-20 日
  • 批准号:
    1040647
  • 财政年份:
    2011
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Standard Grant
Special Meetings: Southeastern Lie Theory Workshop Series
特别会议:东南谎言理论研讨会系列
  • 批准号:
    0852373
  • 财政年份:
    2009
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Standard Grant
Lie Algebras, Vertex Operator Algebras and Their Applications; May 17-21, 2005; Raleigh, NC
李代数、顶点算子代数及其应用;
  • 批准号:
    0453004
  • 财政年份:
    2005
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Standard Grant
Representation of Affine and quantum Affine Algebras and their Applications
仿射和量子仿射代数的表示及其应用
  • 批准号:
    9802449
  • 财政年份:
    1998
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Applications of the Representation Theory of Quantum Affine Lie Algebras to Solvable Lattice Models
数学科学:量子仿射李代数表示论在可解格子模型中的应用
  • 批准号:
    9215075
  • 财政年份:
    1993
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Kac-Moody Lie Algebras and Physics Conference
数学科学:Kac-Moody 李代数和物理会议
  • 批准号:
    8801289
  • 财政年份:
    1988
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Southeastern Logic Symposium
会议:东南逻辑研讨会
  • 批准号:
    2401437
  • 财政年份:
    2024
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Continuing Grant
Beginnings: Creating and Sustaining a Diverse Community of Expertise in Quantum Information Science (EQUIS) Across the Southeastern United States
起点:在美国东南部创建并维持一个多元化的量子信息科学 (EQUIS) 专业社区
  • 批准号:
    2322593
  • 财政年份:
    2023
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Cooperative Agreement
Conference: Southeastern Number Theory Meetings
会议:东南数论会议
  • 批准号:
    2302340
  • 财政年份:
    2023
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Standard Grant
Conference: Southeastern Analysis Meeting 39
会议:东南分析会议39
  • 批准号:
    2247845
  • 财政年份:
    2023
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Standard Grant
Beginnings: Creating and Sustaining a Diverse Community of Expertise in Quantum Information Science (EQUIS) Across the Southeastern United States
起点:在美国东南部创建并维持一个多元化的量子信息科学 (EQUIS) 专业社区
  • 批准号:
    2322592
  • 财政年份:
    2023
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Cooperative Agreement
Perinatal mental health in urban Indigenous women in Southeastern Ontario: A planning proposal
安大略省东南部城市土著妇女的围产期心理健康:规划提案
  • 批准号:
    480823
  • 财政年份:
    2023
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Miscellaneous Programs
Cybertraining: Implementation: Small: CIberCATSS, A Comprehensive, Applied and Tangible CyberInfrastructure Summer School in Southeastern Wisconsin
网络培训:实施:小型:CIberCATSS,威斯康星州东南部的综合性、应用性和有形的网络基础设施暑期学校
  • 批准号:
    2229652
  • 财政年份:
    2023
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Standard Grant
Beginnings: Creating and Sustaining a Diverse Community of Expertise in Quantum Information Science (EQUIS) Across the Southeastern United States
起点:在美国东南部创建并维持一个多元化的量子信息科学 (EQUIS) 专业社区
  • 批准号:
    2322590
  • 财政年份:
    2023
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Cooperative Agreement
Beginnings: Creating and Sustaining a Diverse Community of Expertise in Quantum Information Science (EQUIS) Across the Southeastern United States
起点:在美国东南部创建并维持一个多元化的量子信息科学 (EQUIS) 专业社区
  • 批准号:
    2322594
  • 财政年份:
    2023
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Cooperative Agreement
U-RISE at Nova Southeastern University
诺瓦东南大学 U-RISE
  • 批准号:
    10629916
  • 财政年份:
    2023
  • 资助金额:
    $ 4.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了