Lie Algebras, Vertex Operator Algebras and Their Applications; May 17-21, 2005; Raleigh, NC

李代数、顶点算子代数及其应用;

基本信息

  • 批准号:
    0453004
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-03-01 至 2007-09-30
  • 项目状态:
    已结题

项目摘要

The theory of Lie algebras, both finite and infinite-dimensional, have been a major area of mathematical research with numerous applications in many other areas of mathematics and physics, for example, combinatorics, group theory, number theory, partial differential equations, topology, conformal field theory and string theory, statistical mechanics and integrable systems. In particular, the representation theory of an important class of infinite dimensional Lie algebras known as affine Lie algebras has led to thediscovery of new algebraic structures, such as vertex (operator) algebras and quantum groups. Both of these algebraic structures have become important areas of current mathematical research with deep connections with many other areas in mathematics and physics. This conference will provide an excellent setting for researchers in mathematics and physics working in the area of Lie algebras, vertex operator algebras and their applications to explore possible new directions of research in the twenty-first century.The focus of the conference will be on the following topics:(i) Finite and infinite dimensional Lie algebras and quantum groups.(ii) Vertex operator algebras and their representations.(iii) Applications to number theory, combinatorics, conformal fieldtheory and statistical mechanics.Lie algebras are a class of algebras describing continuous symmetries innature. They were first introduced by mathematician S. Lie in theninteenth century and have been studied by many prominent mathematicians andphysicists since then. During the twentieth century, the theory of Liealgebras developed rapidly into a main research area inmathematics with numerous important applications in physics. Vertexoperator algebras and quantum groups are relatively new class of algebras and can be viewed as far-reaching analogues of Lie algebras. Vertex operator algebras have been used to solve problems related to discrete symmetries and to number theory. They are also an important ingredient in aphysical theory describing phenomena such as the physical state in whichwater, ice and steam coexist and in a physical theory called stringtheory which some physicists are using to unify all the forces in theuniverse. This conference is on Lie algebras, vertex operator algebrasand their applications and it will encourage mathematicians andphysicists to interact and, to join forces to discovernew frontiers. It will be especially beneficial to graduatestudents and junior faculty members who havejust started their careers. We will encourage participation from graduate students, junior researchers, women, minorities, and persons with disabilities by giving them priority for financial support.
李代数的理论,无论是有限维还是无限维,都是数学研究的一个主要领域,在数学和物理的许多其他领域都有许多应用,例如组合学,群论,数论,偏微分方程,拓扑学,共形场论和弦理论,统计力学和可积系统。特别是,一类重要的无限维李代数的表示理论,称为仿射李代数,导致了新的代数结构的发现,如顶点(算子)代数和量子群。这两种代数结构已经成为当前数学研究的重要领域,与数学和物理学的许多其他领域有着深刻的联系。这次会议将为从事李代数、顶点算子代数及其应用领域的数学和物理研究人员提供一个极好的环境,以探索二十一世纪可能的新研究方向。会议的重点将放在以下主题上:(i)有限和无限维李代数和量子群。(ii)顶点算子代数及其表示。(iii)在数论、组合数学、共形场论和统计力学中的应用李代数是一类描述自然界中连续对称性的代数。它们最早是由数学家S.存在于世纪,从那时起,许多杰出的数学家和物理学家都对它进行了研究。 世纪,李代数理论迅速发展成为数学中的一个主要研究领域,在物理学中有许多重要的应用。顶点算子代数和量子群是相对较新的一类代数,可以被看作是李代数的意义深远的类似物。顶点算子代数已经被用来解决与离散对称和数论有关的问题。它们也是描述诸如水、冰和蒸汽共存的物理状态等现象的物理理论和一些物理学家用来统一宇宙中所有力的物理理论弦理论的重要组成部分。这次会议是关于李代数,顶点算子代数及其应用,它将鼓励数学家和物理学家互动,并联手开拓新的前沿。这将是特别有益的研究生和初级教师谁刚刚开始他们的职业生涯。我们将鼓励研究生、初级研究人员、妇女、少数民族和残疾人的参与,优先给予他们财政支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kailash Misra其他文献

Superior monogamy and polygamy relations and estimates of concurrence
  • DOI:
    10.1140/epjp/s13360-025-06029-1
  • 发表时间:
    2025-02-05
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Yue Cao;Naihuan Jing;Kailash Misra;Yiling Wang
  • 通讯作者:
    Yiling Wang

Kailash Misra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kailash Misra', 18)}}的其他基金

Conference: Southeastern Lie Theory Workshop Series
会议:东南谎言理论研讨会系列
  • 批准号:
    2303977
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Southeastern Lie Theory Workshop Series
东南谎言理论工作坊系列
  • 批准号:
    1801804
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Southeastern Lie Theory Workshop Series; Algebraic and Combinatorial Representation Theory (2015: NCSU); Algebraic Groups, Quantum Groups and Geometry (2016: UVA)
东南谎言理论研讨会系列;
  • 批准号:
    1544407
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Southeastern Lie Theory Workshop Series
东南谎言理论工作坊系列
  • 批准号:
    1206255
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences-Deformation Theory of Algebras and Modules- May 16-20, 2011
NSF/CBMS 数学科学区域会议 - 代数和模的变形理论 - 2011 年 5 月 16-20 日
  • 批准号:
    1040647
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Special Meetings: Southeastern Lie Theory Workshop Series
特别会议:东南谎言理论研讨会系列
  • 批准号:
    0852373
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Representation of Affine and quantum Affine Algebras and their Applications
仿射和量子仿射代数的表示及其应用
  • 批准号:
    9802449
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Applications of the Representation Theory of Quantum Affine Lie Algebras to Solvable Lattice Models
数学科学:量子仿射李代数表示论在可解格子模型中的应用
  • 批准号:
    9215075
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Kac-Moody Lie Algebras and Physics Conference
数学科学:Kac-Moody 李代数和物理会议
  • 批准号:
    8801289
  • 财政年份:
    1988
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Shuffle algebras and vertex models
洗牌代数和顶点模型
  • 批准号:
    DP240101787
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Identities from Vertex Operator Algebras on the Moduli of Curves
曲线模上顶点算子代数的恒等式
  • 批准号:
    2200862
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Integrable models and deformations of vertex algebras via symmetric functions
通过对称函数的顶点代数的可积模型和变形
  • 批准号:
    EP/V053787/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Vertex Algebras in Geometry and Physics
几何和物理中的顶点代数
  • 批准号:
    SAPIN-2020-00039
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Subatomic Physics Envelope - Individual
Integrable models and deformations of vertex algebras via symmetric functions
通过对称函数的顶点代数的可积模型和变形
  • 批准号:
    EP/V053728/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Modular linear differential equations and vertex operator algebras
模线性微分方程和顶点算子代数
  • 批准号:
    22K03249
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New directions in vertex algebras and moonshine
顶点代数和 Moonshine 的新方向
  • 批准号:
    22K03264
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Higher Quantum Airy Structures from Vertex Operator Algebras
顶点算子代数的更高量子艾里结构
  • 批准号:
    569537-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Conference on Quantum Symmetries: Tensor Categories, Topological Quantum Field Theories, and Vertex Algebras
量子对称会议:张量范畴、拓扑量子场论和顶点代数
  • 批准号:
    2228888
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Vertex Algebras in Geometry and Physics
几何和物理中的顶点代数
  • 批准号:
    SAPIN-2020-00039
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Subatomic Physics Envelope - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了