Catalyst Project: Data Science and Machine Learning – An Interdisciplinary STEM Training Project for the Future Workforce
催化剂项目:数据科学和机器学习 — 针对未来劳动力的跨学科 STEM 培训项目
基本信息
- 批准号:2305470
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Catalyst Projects provide support for Historically Black Colleges and Universities (HBCUs) to work towards establishing research capacity of faculty to strengthen science, technology, engineering and mathematics (STEM) undergraduate education and research. It is expected that the award will further the faculty member's research capability, improve research and teaching at the institution, and involve undergraduate students in research experiences. In collaboration with North Carolina State University (NCSU), Benedict College (BC) seeks to enhance the undergraduate curriculum and provide adequate knowledge, hands-on training, and certifications in data science and machine learning for HBCU students.The project’s four overarching objectives are to: (1) develop joint data science and machine learning programs, (2) integrate experiential learning and internships, (3) develop learning laboratories for research and teaching, and (4) develop joint learning and research programs. HBCU students taking the new proposed courses will learn how to solve real-world problems using data science and machine learning modules in the classroom. They will also be provided with academic year experiential learning and summer research opportunities at BC and NCSU. In addition to strengthening STEM undergraduate education and research at an HBCU, the project will also enable students historically underrepresented in STEM to improve their marketability and create sustainable industrial internships for those interested in emerging data science and machine learning fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
催化剂项目为历史上的黑人学院和大学(HBCU)提供支持,以建立教师的研究能力,加强科学,技术,工程和数学(STEM)本科教育和研究。预计该奖项将进一步提高教师的研究能力,改善研究和教学机构,并参与本科生的研究经验。本尼迪克特学院(BC)与北卡罗来纳州州立大学(NCSU)合作,旨在加强本科课程,并为HBCU学生提供足够的知识,实践培训和数据科学和机器学习认证。该项目的四个首要目标是:(1)开发联合数据科学和机器学习项目,(2)整合体验式学习和实习,(3)开发用于研究和教学的学习实验室,(4)开展联合学习和研究项目。HBCU的学生将学习如何在课堂上使用数据科学和机器学习模块解决现实世界的问题。他们还将在BC和NCSU提供学年体验式学习和夏季研究机会。除了加强HBCU的STEM本科教育和研究,该项目还将使在STEM领域历来代表性不足的学生能够提高他们的市场竞争力,并为那些对新兴数据科学和机器学习领域感兴趣的人创造可持续的工业实习机会。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Negash Begashaw其他文献
Negash Begashaw的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Negash Begashaw', 18)}}的其他基金
Excellence in Research: Research in Machine Learning and Its Application
卓越研究:机器学习及其应用研究
- 批准号:
1954532 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
STEM Focused Engagement of Undecided Students
STEM 重点关注尚未做出决定的学生的参与
- 批准号:
0622555 - 财政年份:2006
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似海外基金
GOAL project: AI-supported self-directed learning lifestyle in data-rich educational ecosystem
GOAL 项目:数据丰富的教育生态系统中人工智能支持的自主学习生活方式
- 批准号:
23K25156 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Project North AI - a new data and analytics platform that uses AI to support the financing and distribution of independent film
Project North AI - 一个新的数据和分析平台,利用人工智能支持独立电影的融资和发行
- 批准号:
10103511 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Investment Accelerator
NESP MaC Project 3.6 - Improving data on the distribution and ecological value of temperate subtidal seagrass in tayaritja (Furneaux Group of Islands), Tasmania
NESP MaC 项目 3.6 - 改善塔斯马尼亚塔亚里贾(弗诺群岛)温带潮下海草分布和生态价值的数据
- 批准号:
global : 436e10ed-3322-494c-93a3-3bdf3405c045 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Targeted Infusion Project: Microbiome Data Science Infusion to Improve Undergraduate Research, Pedagogy, and Workforce Preparation
有针对性的注入项目:微生物组数据科学注入,以改善本科生研究、教学法和劳动力准备
- 批准号:
2306512 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Broadening Participation Research Project: Investigating the Efficacy of Data Science for Environmental Justice based PBL Modules for Improving Diversity in Environmental Science
扩大参与研究项目:调查数据科学对环境正义的有效性,基于 PBL 模块以提高环境科学的多样性
- 批准号:
2306658 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Comprehensive Harmonization and Analysis of Case/Control Whole Genome Sequencing Data from the ALS/FTD Compute Project
来自 ALS/FTD 计算项目的病例/对照全基因组测序数据的全面协调和分析
- 批准号:
10592917 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Network Connector: DEDICATE: Data Science Equity-Driven Inquiry to Create Accessible Project-based Training for Social Impact Education
网络连接器:DEDICATE:数据科学公平驱动的探究,为社会影响力教育创建可访问的基于项目的培训
- 批准号:
2304100 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Target Infusion Project: Geospatial Data Systems-Policy Analysis Curriculum Enhancement Project (GDS-PACE)
目标注入项目:地理空间数据系统-政策分析课程增强项目(GDS-PACE)
- 批准号:
2306533 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
NESP MaC Project 3.6 - Improving data on the distribution and ecological value of temperate subtidal seagrass in tayaritja (Furneaux Group of Islands), Tasmania
NESP MaC 项目 3.6 - 改善塔斯马尼亚塔亚里贾(弗诺群岛)温带潮下海草分布和生态价值的数据
- 批准号:
global : 436e10ed-3322-494c-93a3-3bdf3405c045 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Evaluation of a public space reconstruction project using geolocational data
使用地理定位数据评估公共空间重建项目
- 批准号:
23K05290 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)