CAS: Collaborative Research: Processive Ring-Opening Metathesis Polymerization Through Molecularly Confined Catalysts
CAS:合作研究:通过分子限域催化剂进行开环易位聚合
基本信息
- 批准号:2305566
- 负责人:
- 金额:$ 34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the support of the Macromolecular, Supramolecular and Nanochemistry (MSN) program and the Chemical Catalysis (CAT) program in the Division of Chemistry, Jia Niu of Boston College and Wenyu Huang of Iowa State University are developing ring-opening metathesis polymerization (ROMP) catalyzed by organometallic ruthenium complexes confined within molecularly defined cages. Despite the significance of ROMP in producing a plethora of functional polymers, existing techniques still cannot completely prevent chain transfer and termination, in particular when low-strain monomers are involved. As a result, mixtures of linear and cyclic macromolecules of different sizes are formed that are difficult to separate. This research endeavors to directly address this unmet challenge and introduce a distinct strategy for processive ROMP. In this strategy, polymerization catalysts will be encapsulated in molecularly defined cage structures, such that, ideally only monomers, but not nascent polymers, can access the catalyst. This will thereby inhibit the chain transfer and termination caused by the interaction between the catalyst and the nascent polymer, resulting in linear macromolecules with controlled molecular weights. The developed methodology will also be applied to ROMP of sustainability-oriented monomers that are considered challenging for ROMP due to their low strain. These monomers include cyclic alkenes with low ceiling temperatures and those consisting of degradable functionalities. This research will provide interdisciplinary training for students in polymer synthesis and sustainability. The collaborative team will additionally develop a hybrid three-week summer workshop aimed to introduce polymer chemistry principles and practices into 3D-printing. The workshop will be integrated with existing outreach programs to stimulate interest in polymer science and catalysis among college and high school students in the communities served by Boston College and Iowa State University.Synthetic polymers ranging from commodity products to specialty goods are at the center of modern society. Among many properties, molecular weight, sequence, and dispersity are essential in determining the material performance of polymers. Therefore, the precise control over these properties is the central goal in modern synthetic polymer chemistry. This research will focus on developing processive ring-opening metathesis polymerization (ROMP) of low-strain cyclic alkenes through confining organometallic ruthenium catalysts into molecularly defined cages. Such an approach is expected to allow access to monomer molecules but prevent the nascent polymer chains from accessing these confined catalysts. As a result, well-defined, high, and ultra-high molecular weight, low dispersity polymers from ROMP could be realized. The first objective will focus on design of homogeneous and heterogeneous Zr-based cages using the reversable aperture opening/closing approach. These cages will then be utilized to encapsulate ruthenium-based Grubbs and Hoveyda-Grubbs ROMP catalysts. The second objective will leverage molecularly confined catalysts to enable polymerization of sustainability-oriented monomers containing degradable functionalities. Lastly, kinetic behaviors of ROMP mediated by molecularly confined catalysts will be systematically investigated. The basic guiding principles associated with this project are general and have the potential to be applied to various other catalyst-mediated chain-growth polymerization techniques in which the control of termination and/or chain-transfer events is desirable.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系高分子、超分子和纳米化学(MSN)项目和化学催化(CAT)项目的支持下,波士顿学院的Jia Niu和爱荷华州立大学的Wenyu Huang正在开发由限制在分子限定笼内的有机金属钌络合物催化的开环复分解聚合(ROMP)。 尽管 ROMP 在生产大量功能聚合物方面具有重要意义,但现有技术仍然无法完全防止链转移和终止,特别是在涉及低应变单体时。 结果,形成了不同尺寸的线性和环状大分子的混合物,难以分离。 本研究致力于直接解决这一未解决的挑战,并为持续性 ROMP 引入独特的策略。 在这种策略中,聚合催化剂将被封装在分子定义的笼形结构中,这样,理想情况下只有单体,而不是新生聚合物,才能接触到催化剂。 这将从而抑制由催化剂和新生聚合物之间的相互作用引起的链转移和终止,从而产生具有受控分子量的线性大分子。 开发的方法也将应用于以可持续性为导向的单体的 ROMP,这些单体由于其低应变而被认为对 ROMP 具有挑战性。这些单体包括具有低上限温度的环烯烃和由可降解官能团组成的单体。 这项研究将为学生提供聚合物合成和可持续性方面的跨学科培训。 该合作团队还将开发一个为期三周的混合夏季研讨会,旨在将聚合物化学原理和实践引入 3D 打印。该研讨会将与现有的推广计划相结合,以激发波士顿学院和爱荷华州立大学所服务社区的大学生和高中生对聚合物科学和催化的兴趣。从商品到特种商品的合成聚合物处于现代社会的中心。在许多特性中,分子量、序列和分散性对于确定聚合物的材料性能至关重要。因此,对这些性能的精确控制是现代合成高分子化学的中心目标。 这项研究将重点通过将有机金属钌催化剂限制在分子限定的笼中来开发低应变环烯烃的连续开环复分解聚合(ROMP)。 这种方法有望允许接触单体分子,但阻止新生聚合物链接触这些受限的催化剂。 因此,可以通过 ROMP 实现结构明确、高分子量和超高分子量、低分散度的聚合物。 第一个目标将侧重于使用可逆孔径打开/关闭方法设计均质和异质锆基笼。 然后,这些笼将用于封装钌基格鲁布和 Hoveyda-Grubbs ROMP 催化剂。 第二个目标将利用分子限制的催化剂来实现含有可降解功能的面向可持续性的单体的聚合。 最后,将系统地研究分子限制催化剂介导的 ROMP 的动力学行为。与该项目相关的基本指导原则是通用的,并且有可能应用于需要控制终止和/或链转移事件的各种其他催化剂介导的链增长聚合技术。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jia Niu其他文献
The Characteristics of Eutrophication and Its Correlation with Algae in Chongming Island’s Artificial River Network
崇明岛人工河网富营养化特征及其与藻类的相关性
- DOI:
10.1007/978-981-10-1204-4_9 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jianhua Li;Xiaochen Chen;Jia Niu;Xiaofeng Sun - 通讯作者:
Xiaofeng Sun
Regulating cationic polymerization: From structural control to life cycle management
调节阳离子聚合:从结构控制到生命周期管理
- DOI:
10.1016/j.progpolymsci.2023.101736 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:26.100
- 作者:
Lianqian Wu;Brayan Rondon;Shoshana Dym;Wenqi Wang;Kuiru Chen;Jia Niu - 通讯作者:
Jia Niu
Click-PD: A Quantitative Method for Base-Modified Aptamer Discovery
Click-PD:碱基修饰适体发现的定量方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Chelsea K. L. Gordon;D. Wu;T. Feagin;A. Pusuluri;Andrew T. Csordas;M. Eisenstein;C. Hawker;Jia Niu;H. Soh - 通讯作者:
H. Soh
DNA-programmed surface display of receptors to dissect the functional interplay between receptor binding and membrane fusion of single influenza A virions
- DOI:
10.1016/j.bpj.2023.11.1879 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Steven D. Planitzer;Kevin B. Wu;Zhenyu Li;Jia Niu;Tijana Ivanovic - 通讯作者:
Tijana Ivanovic
統計資料を用いた給水人口減少が水道事業経営に及ぼす影響分析
利用统计数据分析供水人口减少对供水业务管理的影响
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Xiaochen Chen;Yuqing Chen;Toshiyuki Shimizu;Jia Niu;Ken'ichi Nakagami;Xuepeng Qian;Baoju Jia;Jun Nakajima;Ji Han;Jianhua Li;清水聡行,山田淳;清水聡行,柴田峻太朗,中島淳;清水聡行,中島淳,山田淳 - 通讯作者:
清水聡行,中島淳,山田淳
Jia Niu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jia Niu', 18)}}的其他基金
CAREER: CAS: Radical Cascade-Driven Polymerization and Depolymerization
职业:CAS:自由基级联驱动的聚合和解聚
- 批准号:
1944512 - 财政年份:2020
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
相似海外基金
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
- 批准号:
2347912 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
- 批准号:
2347913 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
- 批准号:
2400166 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
- 批准号:
2400165 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
- 批准号:
2243099 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Collaborative Research: CAS-SC: Development of Heavy Atom - Free Photocatalysts for Chemical Reactions
合作研究:CAS-SC:开发用于化学反应的无重原子光催化剂
- 批准号:
2247661 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Collaborative Research: CAS-SC: Electrochemical Approaches to Sustainable Dinitrogen Fixation
合作研究:CAS-SC:可持续二氮固定的电化学方法
- 批准号:
2247257 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Photophysics and Electron Transfer Reactivity of Ion Radical Excited States
CAS:合作研究:离子自由基激发态的光物理学和电子转移反应性
- 批准号:
2246509 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Collaborative Research: CAS-Climate: Reservoir dead pool in the western United States: probability and consequences of a novel extreme event
合作研究:CAS-气候:美国西部水库死池:新型极端事件的概率和后果
- 批准号:
2241892 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Collaborative Research: CAS-SC: Development of Heavy Atom - Free Photocatalysts for Chemical Reactions
合作研究:CAS-SC:开发用于化学反应的无重原子光催化剂
- 批准号:
2247662 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Standard Grant














{{item.name}}会员




