Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
基本信息
- 批准号:2305882
- 负责人:
- 金额:$ 69.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to enable mutualistic interaction of cyber damage prognostics and physical reconfigurable sensing for mutualistic and self-adaptive cyber-physical systems (CPS). Drawing inspiration from mutualism in biology where two species interact in a way that benefits both, the cyber and the physical interact in a way that they simultaneously benefit from and contribute to each other to enhance the ability of the CPS to predict, reconfigure, and adapt. Such interaction is generalizable, allowing it to enhance CPS applications in various domains. In the civil infrastructure systems domain, the mutualistic interaction-enabled CPS will allow for reconfiguring a single type of sensor, adaptively based on damage prognostics, to monitor multiple classes of infrastructure damages – thereby improving the cost-effectiveness of multi-damage infrastructure monitoring by reducing the types and number of sensors needed and maximizing the timeliness and accuracy of damage assessment and prediction at the same time. Enabling cost-effective multi-damage monitoring is promising to leapfrog the development of safer, more resilient, and sustainable infrastructure, which would stimulate economic growth and social welfare for the benefit of the nation and its people. This project will also contribute to NSF’s commitment to broadening participation in engineering (BPE) by developing innovative, interdisciplinary, and inclusive BPE programs to attract, train, and reward the next-generation engineering researchers and practitioners who are capable creators of CPS technology and not only passive consumers, thereby enhancing the U.S. economy, security, and well-being.The envisioned CPS includes three integrated components: (1) data-driven, knowledge-informed deep learning methods for generalizable damage prognostics to predict the onset and propagation of infrastructure damages, providing information about target damages to inform reconfigurable sensing, (2) signal difference maximization theory-based reconfigurable sensing methods to optimize and physically control the configurations of the sensors to actively seek to monitor each of the predicted target damages, providing damage-seeking feedback to inform damage prognostics, and (3) quality-aware edge cloud computing methods for efficient and effective damage information extraction from raw sensing signals, serving as the bridge between damage prognostics and reconfigurable sensing. The proposed CPS will be tested in multi-damage monitoring of bridges using simulation-based and actual CPS prototypes, and would be generalized to monitoring other civil infrastructure in the future. The proposed CPS methods have the potential to transform the way we design, create, and operate CPS to enable the next-generation CPS that have greater predictive ability, reconfigurability, and adaptability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在为互惠和自适应的网络物理系统(CP)实现网络损害预测和物理可重构感知的互惠互动。从生物学中的互惠互利中获得灵感,两个物种以一种对双方都有利的方式相互作用,网络和物理以一种它们同时从彼此受益并相互促进的方式相互作用,以增强CP的预测、重新配置和适应的能力。这种交互是可推广的,使其能够增强各个领域中的CPS应用。在民用基础设施系统领域,互惠互动的CPS将允许根据损害预测自适应地重新配置单一类型的传感器,以监测多种类型的基础设施损害,从而通过减少所需传感器的类型和数量,同时最大限度地提高损害评估和预测的及时性和准确性,从而提高多损害基础设施监测的成本效益。实现具有成本效益的多重损害监测有望实现更安全、更具弹性和可持续的基础设施的跨越式发展,这将刺激经济增长和社会福利,造福国家和人民。该项目还将有助于NSF致力于通过开发创新、跨学科和包容性的BPE计划来吸引、培训和奖励下一代工程研究人员和从业者,他们不仅是被动消费者,而且是CPS技术的创造者,从而增强美国的经济、安全和福祉。设想的CPS包括三个集成组件:(1)用于概括损害预测的数据驱动、知识知情的深度学习方法,以预测基础设施损害的开始和传播,提供有关目标损害的信息,为可重新配置的感知提供信息,(2)基于信号差最大化理论的可重构传感方法,用于优化和物理控制传感器的配置,以主动监控每个预测的目标损伤,提供损伤寻求反馈,为损伤预测提供信息;(3)基于质量感知的边缘云计算方法,从原始传感信号中高效、有效地提取损伤信息,作为损伤预测和可重构感知之间的桥梁。所提出的CPS将在基于模拟的CPS原型和实际CPS原型的桥梁多损伤监测中进行测试,并将在未来推广到其他民用基础设施的监测。建议的CPS方法有可能改变我们设计、创建和运营CPS的方式,使下一代CPS具有更强的预测能力、可重构性和适应性。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kaijian Liu其他文献
A Hybrid Information Fusion Method for Fusing Data Extracted from Inspection Reports for Supporting Bridge Data Analytics
一种混合信息融合方法,用于融合从检查报告中提取的数据以支持桥梁数据分析
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Kaijian Liu;N. El - 通讯作者:
N. El
Similarity-Based Dependency Parsing for Extracting Dependency Relations from Bridge Inspection Reports
基于相似性的依赖解析从桥梁检查报告中提取依赖关系
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Kaijian Liu;N. El - 通讯作者:
N. El
Semantic Modeling of Bridge Deterioration Knowledge for Supporting Big Bridge Data Analytics
支持大桥数据分析的桥梁劣化知识语义建模
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Kaijian Liu;N. El - 通讯作者:
N. El
Deep Learning-Based Analytics of Multisource Heterogeneous Bridge Data for Enhanced Data-Driven Bridge Deterioration Prediction
基于深度学习的多源异构桥梁数据分析,以增强数据驱动的桥梁劣化预测
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:6.9
- 作者:
Kaijian Liu;N. El - 通讯作者:
N. El
Unsupervised Named Entity Normalization for Supporting Information Fusion for Big Bridge Data Analytics
用于支持大桥数据分析信息融合的无监督命名实体规范化
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Kaijian Liu;N. El - 通讯作者:
N. El
Kaijian Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
细梗香草活性成分CPS-B靶向MARCHF3/NEU4/CDH11通路抑制宫颈癌侵袭转移的作用机制研究
- 批准号:HDMZ25H280006
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
肺炎克雷伯菌WaaLCPS连接酶相关的CPS-LPS合成通路及致病机制的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于自动深度学习的电力CPS入侵检测及安全性提升方法研究
- 批准号:Z25F030003
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
先锋转录因子FOXA2调控CPS1介导尿素循环在急性肝衰竭肝性脑病中的机制研究
- 批准号:82300699
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
代谢酶CPS1调控PD-L1表达重塑肝癌免疫微环境的作用及机制研究
- 批准号:82303340
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
CPs/MOFs介导多烯衍生物拓扑光聚合的高立体选择性构建策略研究
- 批准号:22361004
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
尿素循环关键酶CPS1表达异常在肺癌转移中的作用和机制研究
- 批准号:82273390
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
CPS 仿真中离散事件模型与连续时间模型的分布式协同运行问题研究
- 批准号:2022JJ40559
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
CPS1通过减少DAG的含量而抑制肝细胞肝癌侵袭转移的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向智能交通认知的CPS计算架构与可解释深度学习模型研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 69.4万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 69.4万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322533 - 财政年份:2024
- 资助金额:
$ 69.4万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420847 - 财政年份:2024
- 资助金额:
$ 69.4万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
- 批准号:
2423130 - 财政年份:2024
- 资助金额:
$ 69.4万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
$ 69.4万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 69.4万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
- 批准号:
2333980 - 财政年份:2023
- 资助金额:
$ 69.4万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
- 批准号:
2401007 - 财政年份:2023
- 资助金额:
$ 69.4万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
- 批准号:
2235231 - 财政年份:2023
- 资助金额:
$ 69.4万 - 项目类别:
Standard Grant