Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
基本信息
- 批准号:2306438
- 负责人:
- 金额:$ 25.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Numerical algorithms that can process huge amounts of data are increasingly important, notably for those algorithms used every day within artificial intelligence (AI) software. Examples include voice assistants, facial recognition for cellphones, and machine-learning-based financial fraud detection. But many algorithms are applied only heuristically and remain poorly understood, meaning that theoretical guarantees are missing. In fact, recent AI applications indicate that the direct application of these algorithms, without proper validation, may generate artificial, misleading information. The broad aim of this proposal is to deepen our understanding of classes of statistically-relevant random matrix models that are used to model, analyze and interpret large data sets and to analyze new and classical algorithms as they act on these models. It is expected that this will produce new insights and statistical tools, paired with theoretical guarantees. This award will also train junior researchers and help continue to build the community of researchers working in this field.The proposed problems fit into three main projects. The first concerns the analysis of random matrix models that extend the classical setting of sample covariance matrices. Then by connecting random matrix models and orthogonal polynomials via Riemann--Hilbert problems, the PIs will obtain new estimates and new conclusions about orthogonal polynomials for natural measures generated by these random matrices. Armed with the theoretical results, the second project concerns the direct application of the estimates from the first project, and further refinement of previous analyses, to understand the average-case behavior of numerical algorithms. The focus here is on algorithms from numerical linear algebra. In the third project, the investigators will use the new random matrix estimates, the new results in the theory of orthogonal polynomials and its associated Riemann--Hilbert theory, for both classical and new random matrix ensembles, to generate new algorithms, ultimately leading to new viable statistical estimators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可以处理大量数据的数值算法变得越来越重要,特别是对于人工智能(AI)软件中每天使用的算法。 例子包括语音助手,手机面部识别和基于机器学习的金融欺诈检测。但许多算法只是在实践中应用,人们对它们的理解仍然很少,这意味着缺乏理论保证。事实上,最近的人工智能应用表明,在没有适当验证的情况下直接应用这些算法可能会产生人为的误导性信息。 该提案的主要目的是加深我们对用于建模,分析和解释大型数据集的与物理相关的随机矩阵模型的理解,并分析新的和经典的算法,因为它们作用于这些模型。 预计这将产生新的见解和统计工具,并提供理论保证。 该奖项还将培训初级研究人员,并帮助继续建立在这一领域工作的研究人员社区。 第一个是关于随机矩阵模型的分析,它扩展了样本协方差矩阵的经典设置。然后通过Riemann-Hilbert问题将随机矩阵模型与正交多项式联系起来,得到了由这些随机矩阵生成的自然测度的正交多项式的新估计和新结论。 有了理论结果,第二个项目涉及直接应用第一个项目的估计,并进一步完善以前的分析,以了解数值算法的平均情况下的行为。 这里的重点是从数值线性代数的算法。 在第三个项目中,研究人员将使用新的随机矩阵估计,正交多项式理论及其相关的Riemann-Hilbert理论中的新结果,用于经典和新的随机矩阵集合,以生成新的算法,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识产权进行评估来支持。优点和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Trogdon其他文献
Numerical Solution of Riemann–Hilbert Problems: Random Matrix Theory and Orthogonal Polynomials
- DOI:
10.1007/s00365-013-9221-3 - 发表时间:
2013-12-11 - 期刊:
- 影响因子:1.200
- 作者:
Sheehan Olver;Thomas Trogdon - 通讯作者:
Thomas Trogdon
Thomas Trogdon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Trogdon', 18)}}的其他基金
CAREER: Numerical Linear Algebra, Random Matrix Theory and Applications
职业:数值线性代数、随机矩阵理论及应用
- 批准号:
1945652 - 财政年份:2019
- 资助金额:
$ 25.72万 - 项目类别:
Continuing Grant
CAREER: Numerical Linear Algebra, Random Matrix Theory and Applications
职业:数值线性代数、随机矩阵理论及应用
- 批准号:
1753185 - 财政年份:2018
- 资助金额:
$ 25.72万 - 项目类别:
Continuing Grant
CBMS Conference: The Solution of Problems in Multiply-Connected Domains
CBMS会议:多连通域问题的解决方案
- 批准号:
1743920 - 财政年份:2017
- 资助金额:
$ 25.72万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
- 批准号:
2348163 - 财政年份:2023
- 资助金额:
$ 25.72万 - 项目类别:
Standard Grant
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
- 批准号:
2306439 - 财政年份:2023
- 资助金额:
$ 25.72万 - 项目类别:
Continuing Grant
Collaborative Research: CDS&E: Scalable Inference for Spatio-Temporal Markov Random Fields
合作研究:CDS
- 批准号:
2152777 - 财政年份:2022
- 资助金额:
$ 25.72万 - 项目类别:
Continuing Grant
Collaborative Research: CDS&E: Scalable Inference for Spatio-Temporal Markov Random Fields
合作研究:CDS
- 批准号:
2152776 - 财政年份:2022
- 资助金额:
$ 25.72万 - 项目类别:
Continuing Grant
Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
- 批准号:
2243210 - 财政年份:2022
- 资助金额:
$ 25.72万 - 项目类别:
Standard Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
- 批准号:
2152999 - 财政年份:2022
- 资助金额:
$ 25.72万 - 项目类别:
Standard Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
- 批准号:
2152998 - 财政年份:2022
- 资助金额:
$ 25.72万 - 项目类别:
Standard Grant
Collaborative Research: Use of Random Compression Matrices For Scalable Inference in High Dimensional Structured Regressions
合作研究:使用随机压缩矩阵进行高维结构化回归中的可扩展推理
- 批准号:
2210672 - 财政年份:2022
- 资助金额:
$ 25.72万 - 项目类别:
Standard Grant
Collaborative Research: Use of Random Compression Matrices For Scalable Inference in High Dimensional Structured Regressions
合作研究:使用随机压缩矩阵进行高维结构化回归中的可扩展推理
- 批准号:
2210206 - 财政年份:2022
- 资助金额:
$ 25.72万 - 项目类别:
Standard Grant
Collaborative Research: Population Dynamics in Random Environments: Theory and Approximation
合作研究:随机环境中的种群动态:理论与近似
- 批准号:
2147903 - 财政年份:2021
- 资助金额:
$ 25.72万 - 项目类别:
Standard Grant