Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling

合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法

基本信息

  • 批准号:
    2152999
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Rare natural hazards (for example, storm surge and hurricanes) can cause loss of lives and devastating damage to society and the environment. For instance, Hurricane Katrina (2005) caused over 1,500 deaths and total estimated damages of $75 billion in the New Orleans area and along the Mississippi coast as a result of storm surge. Uncertainty quantification (UQ) has been used widely to understand, monitor, and predict these rare natural hazards. The Gaussian process (GP) modeling framework is one of the most widely used tools to address such UQ applications and has been studied across several areas, including spatial statistics, design and analysis of computer experiments, and machine learning. With the advance of measurement technology and increasing computing power, large numbers of measurements and large-scale numerical simulations at increasing resolutions are routinely collected in modern applications and have given rise to several critical challenges in predicting real-world processes with associated uncertainty. While GP presents a promising route to carrying out UQ tasks for modern emerging applications such as coastal flood hazard studies, existing GP methods are inadequate in addressing several notable issues such as computational bottleneck due to big datasets and spatial heterogeneity due to complex structures in multi-dimensional domains. This project will develop new Bayesian GP methods to allow scalable computation and to capture spatial heterogeneity. The new methods, algorithms, theory, and software are expected to improve GP modeling for addressing data analytical issues across a wide range of fields, including physical science, engineering, medical science, public health, and business science. The project will develop and distribute user-friendly open-source software and provide interdisciplinary research training opportunities for undergraduate and graduate students.This project aims to develop a new Bayesian multi-scale residual learning framework with strong theoretical support that allows scalable computation and spatial nonstationarity for GP modeling. This framework integrates and extends several powerful techniques respectively arising in the literature on GP and that on multi-scale modeling, including predictive process approximation, blockwise shrinkage, and random recursive partitioning on the domain. This framework decomposes the GP into a cascade of residual processes that characterize the underlying covariance structures at different resolutions and that can be spatially heterogeneous in a variety of ways. The new framework allows for adoption of blockwise shrinkage to infer the covariance of the residual processes and incorporates random partition priors to enable adaptivity to various spatial structures in multi-dimensional domains. New recursive algorithms inspired by wavelet shrinkage and state-space models will be developed to achieve linear computational complexity and linear storage complexity in terms of the number of observations. The resulting GP method will guarantee linear computational complexity in a serial computing environment and also be easily parallelizable. This Bayesian multi-scale residual learning method provides a new approach to addressing GP modeling issues among spatial statistics, design and analysis of computer experiments, machine learning, and nonparametric regression.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
罕见的自然危害(例如,风暴潮和飓风)可能会造成生命丧失,并造成对社会和环境的破坏。例如,卡特里娜飓风(2005年)在新奥尔良地区和密西西比州海岸造成了1,500多人的死亡,估计为750亿美元的赔偿金。不确定性定量(UQ)已被广泛用于理解,监测和预测这些罕见的自然危害。 高斯流程(GP)建模框架是解决此类UQ应用程序的最广泛使用的工具之一,并且已经在多个领域进行了研究,包括空间统计,计算机实验的设计和分析以及机器学习。随着测量技术的进步和提高计算能力,在现代应用中常规收集了大量的测量和大规模的数值模拟,并在预测现实世界中与相关不确定性的现实世界过程中遇到了一些关键挑战。尽管GP提出了针对现代新兴应用(例如沿海洪水危害研究)执行UQ任务的有希望的途径,但现有的GP方法在解决了几个值得注意的问题(例如由于多维域中复杂的结构)而引起的几个值得注意的问题,例如计算瓶颈。该项目将开发新的贝叶斯GP方法,以允许可扩展计算并捕获空间异质性。新方法,算法,理论和软件有望改善GP建模,以解决各种领域的数据分析问题,包括物理科学,工程,医学,医学,公共卫生和商业科学。该项目将开发和分发用户友好的开源软件,并为本科生和研究生提供跨学科的研究培训机会。该项目旨在开发新的贝叶斯多规模剩余学习框架,并具有强大的理论支持,可扩展计算和空间非常规的GP模型。该框架集成并扩展了有关GP的文献和多尺度建模的几种强大技术,包括预测过程近似,区域收缩和域上随机递归分区。该框架将GP分解为一系列剩余过程,这些过程表征了不同分辨率下的基本协方差结构,并且可以通过多种方式在空间上是异质的。新框架允许采用块缩小缩小来推断剩余过程的协方差,并结合随机分区先验,以使对多维域中各种空间结构的适应性适应。将开发受小波收缩和状态空间模型启发的新递归算法,以实现线性计算复杂性和线性存储复杂性,以观测值的数量。所得的GP方法将保证在串行计算环境中线性计算复杂性,并且也很容易平行。这种贝叶斯多尺度剩余学习方法提供了一种新的方法,可以解决针对计算机实验,机器学习和非参数回归的空间统计,设计和分析之间的GP建模问题。该奖项反映了NSF的法定任务,并通过该基金会的智力优点和广泛的影响来评估CRITERIA CRITERIA。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li Ma其他文献

Variations in the precipitation extremes over the Guangdong‑Hong Kong‑Macao Greater Bay Area in China
粤港澳大湾区极端降水变化
  • DOI:
    10.1007/s00704-021-03829-0
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Xianru Li;Zhigang Wei;Huan Wang;Li Ma;Shitong Guo
  • 通讯作者:
    Shitong Guo
Synergic remediation of polycyclic aromatic hydrocarbon-contaminated soil by a combined system of persulfate oxidation activated by biochar and phytoremediation with basil: A compatible, robust, and sustainable approach
通过生物炭激活的过硫酸盐氧化和罗勒植物修复的组合系统对多环芳烃污染的土壤进行协同修复:一种兼容、稳健和可持续的方法
  • DOI:
    10.1016/j.cej.2022.139502
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Xiaoying Li;Qiren Tan;Ying Zhou;Qincheng Cehn;Peng Sun;Guoqing Shen;Li Ma
  • 通讯作者:
    Li Ma
Uniform small-sized MoS2 from novel solution-based microwave-assisted method with exceptional reversible lithium storage properties
采用基于溶液的新型微波辅助方法制备的均匀小尺寸 MoS2,具有优异的可逆锂存储特性
  • DOI:
    10.1039/c8nr02833h
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Xuehui Tian;Qiuming Gao;Hang Zhang;Zeyu Li;Hong Xiao;Qiang Zhang;Li Ma
  • 通讯作者:
    Li Ma
Tracking of Dance Limb Movement Trajectory Based on Kinect Bone Data
Finite time blowup and global solutions of Euler type equations in matrix geometry
矩阵几何中欧拉型方程的有限时间爆炸和全局解

Li Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Li Ma', 18)}}的其他基金

Advances in Bayesian Nonparametric Methods for Jointly Modeling Multiple Data Sets
联合建模多个数据集的贝叶斯非参数方法的进展
  • 批准号:
    2013930
  • 财政年份:
    2020
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
ISBA 2020: 15th World Meeting of the International Society for Bayesian Analysis -- June 29-July 3, 2020
ISBA 2020:国际贝叶斯分析学会第十五届世界会议——2020年6月29日至7月3日
  • 批准号:
    1938935
  • 财政年份:
    2020
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
CAREER: Advances in Multi-scale Bayesian Inference and Learning on Massive Data
职业:多尺度贝叶斯推理和海量数据学习的进展
  • 批准号:
    1749789
  • 财政年份:
    2018
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Graphical Multi-Resolution Scanning for Cross-Sample Variation
针对跨样本变化的图形多分辨率扫描
  • 批准号:
    1612889
  • 财政年份:
    2016
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Bayesian Recursive Partitioning and Inference on the Structure of High-Dimensional Distributions
高维分布结构的贝叶斯递归划分和推理
  • 批准号:
    1309057
  • 财政年份:
    2013
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant

相似国自然基金

贝叶斯视角下视觉分类器的鲁棒泛化性研究
  • 批准号:
    62302139
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高维多节点贝叶斯网络的银屑病罹患与五运六气关联性研究
  • 批准号:
    82374618
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
农田生物量遥感估算模型中输入不确定性的贝叶斯优化方法研究
  • 批准号:
    42301386
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
局部可交换数据的贝叶斯非参数模型及其在精算中的应用研究
  • 批准号:
    72371186
  • 批准年份:
    2023
  • 资助金额:
    39.00 万元
  • 项目类别:
    面上项目
基于贝叶斯优化估计的多角度偏振遥感气溶胶层高度分布反演研究
  • 批准号:
    42371388
  • 批准年份:
    2023
  • 资助金额:
    46.00 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
  • 批准号:
    10663605
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
  • 批准号:
    2348163
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333326
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了