Scaling limits of queueing systems on graphs
图上排队系统的缩放限制
基本信息
- 批准号:2308120
- 负责人:
- 金额:$ 18.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Networks of queueing systems have broad applications in applied probability and operations research, such as in the design of call centers, factories, shops, offices, hospitals, public transportation services, and cloud computing systems. The goal of this project is to understand the impact of the network on the performance of large interacting queueing systems, in both typical scenarios and rare and unexpected scenarios with significant consequences. This research will help system managers design the queueing network and queueing policies, which will lead to better system efficiency and stability. The project will also develop new mathematical techniques for problems of networks of interacting queues, and the results will be beneficial to the study of areas beyond queueing systems, such as social science and epidemiology. This research project includes training undergraduate students, graduate students, and postdoctoral researchers.This project focuses mainly on the analysis of asymptotic behavior of large-scale load balancing queueing systems on random graphs, including join-the-shortest-queue, join-the-idle-queue and power-of-d policies. Three classes of graphs will be considered: classic complete graphs, random graphs with homogeneous limits, and heterogeneous random graphs. The research objectives are to rigorously understand the crucial and challenging impacts of stochastic networks on the system performance, in particular the significant deviation from the classic complete graph setup, via obtaining various scaling limits, including laws of large numbers, central limit theorems, long-time stability, large deviation principles and moderate deviation principles, together with analyzing the associated accelerated Monte-Carlo schemes of numerical estimation of rare event probabilities. The study of typical asymptotic behaviors will require a combination of tools from the theory of weakly interacting particle systems and random graph/graphon theory. The main challenges of obtaining large and moderate deviation principles arise from system features of infinite dimensional dynamics, vanishing transition rates, and discontinuous statistics. Besides using classic large deviation approaches and weak convergence approaches, the study of atypical asymptotic behaviors will also require the development of new techniques, involving a combination of tools from stochastic analysis and differential equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
排队系统的网络在应用概率和操作研究中具有广泛的应用,例如在呼叫中心,工厂,商店,办公室,医院,公共交通服务和云计算系统的设计中。该项目的目的是了解网络对大型交互排队系统性能的影响,无论是在典型的情况下以及罕见和意外情况下带来的重大后果。这项研究将帮助系统经理设计排队网络和排队政策,这将提高系统效率和稳定性。该项目还将开发针对互动队列网络问题的新数学技术,结果将有助于研究排队系统(例如社会科学和流行病学)的领域。 This research project includes training undergraduate students, graduate students, and postdoctoral researchers.This project focuses mainly on the analysis of asymptotic behavior of large-scale load balancing queueing systems on random graphs, including join-the-shortest-queue, join-the-idle-queue and power-of-d policies.将考虑三类图:经典完整图,具有均匀限制的随机图和异质随机图。 The research objectives are to rigorously understand the crucial and challenging impacts of stochastic networks on the system performance, in particular the significant deviation from the classic complete graph setup, via obtaining various scaling limits, including laws of large numbers, central limit theorems, long-time stability, large deviation principles and moderate deviation principles, together with analyzing the associated accelerated Monte-Carlo schemes of numerical estimation of rare event probabilities.对典型渐近行为的研究将需要从弱相互作用的粒子系统和随机图/图形理论理论中结合使用工具。获得大型和中等偏差原理的主要挑战是由无限尺寸动态,消失的过渡速率和不连续统计的系统特征引起的。除了采用经典的大偏差方法和弱收敛方法外,对非典型渐近行为的研究还将需要开发新技术,涉及从随机分析和差分方程的工具组合。该奖项反映了NSF的法定任务,并认为通过基金会的知识优点和广泛的criteria crietia crietia crietia crietia crietia crietia criteria criperia criperia crietia crietia criteria criteria criperia均值得通过评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruoyu Wu其他文献
A Method of Time–Intensity Curve Calculation for Vascular Perfusion of Uterine Fibroids Based on Subtraction Imaging with Motion Correction
基于运动校正减影成像的子宫肌瘤血管灌注时间-强度曲线计算方法
- DOI:
10.1007/s11220-016-0145-4 - 发表时间:
2016-10 - 期刊:
- 影响因子:0
- 作者:
Xinjian Zhu;Ruoyu Wu;Tao Li;Dawei Zhao;Xin Shan;Puling Wang;Song Peng;Faqi Li;Baoming Wu - 通讯作者:
Baoming Wu
Some asymptotic results for weakly interacting particle systems
弱相互作用粒子系统的一些渐近结果
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Ruoyu Wu - 通讯作者:
Ruoyu Wu
DnD: A Cross-Architecture Deep Neural Network Decompiler
DnD:跨架构深度神经网络反编译器
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ruoyu Wu;Taegyu Kim;David Tian;Antonio Bianchi;Dongyan Xu - 通讯作者:
Dongyan Xu
Interleukin-1 beta influences functional regeneration following nerve injury in mice through NF-kappa B signaling pathway
Interleukin-1 beta 通过 NF-kappa B 信号通路影响小鼠神经损伤后的功能再生
- DOI:
10.1111/imm.13022 - 发表时间:
2019 - 期刊:
- 影响因子:6.4
- 作者:
Ruoyu Wu;Bi Chen;Xiang Jia;Yu Qiu;Mengyu Liu;Chengsheng Huang;Jie Feng;Qingkai Wu - 通讯作者:
Qingkai Wu
Locally interacting diffusions as space-time Markov random fields
作为时空马尔可夫随机场的局部相互作用扩散
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
D. Lacker;K. Ramanan;Ruoyu Wu - 通讯作者:
Ruoyu Wu
Ruoyu Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于量子Cramer-Rao极限的非厄米及开放系统量子感知研究
- 批准号:12305031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机乘积和带状矩阵最大特征值的极限分布
- 批准号:12371157
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
多项式扰动系统的极限环分支与符号计算
- 批准号:12371175
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
局部相依结构下的自正则化及非自正则化的精细中心极限定理
- 批准号:12301182
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
考虑动态效应和结构损伤的大型集装箱船结构极限强度及失效机理研究
- 批准号:52371328
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 18.5万 - 项目类别:
Research Grant
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
- 批准号:
24K06758 - 财政年份:2024
- 资助金额:
$ 18.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 18.5万 - 项目类别:
Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
$ 18.5万 - 项目类别:
Continuing Grant
Flame quenching and Lean blow-off limits of new zero/low-carbon fuels towards delivering a green Aviation; a combined Modelling & Experimental study
新型零碳/低碳燃料的熄火和精益吹气限制,以实现绿色航空;
- 批准号:
EP/Y020839/1 - 财政年份:2024
- 资助金额:
$ 18.5万 - 项目类别:
Research Grant