Scaling limits of queueing systems on graphs

图上排队系统的缩放限制

基本信息

  • 批准号:
    2308120
  • 负责人:
  • 金额:
    $ 18.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Networks of queueing systems have broad applications in applied probability and operations research, such as in the design of call centers, factories, shops, offices, hospitals, public transportation services, and cloud computing systems. The goal of this project is to understand the impact of the network on the performance of large interacting queueing systems, in both typical scenarios and rare and unexpected scenarios with significant consequences. This research will help system managers design the queueing network and queueing policies, which will lead to better system efficiency and stability. The project will also develop new mathematical techniques for problems of networks of interacting queues, and the results will be beneficial to the study of areas beyond queueing systems, such as social science and epidemiology. This research project includes training undergraduate students, graduate students, and postdoctoral researchers.This project focuses mainly on the analysis of asymptotic behavior of large-scale load balancing queueing systems on random graphs, including join-the-shortest-queue, join-the-idle-queue and power-of-d policies. Three classes of graphs will be considered: classic complete graphs, random graphs with homogeneous limits, and heterogeneous random graphs. The research objectives are to rigorously understand the crucial and challenging impacts of stochastic networks on the system performance, in particular the significant deviation from the classic complete graph setup, via obtaining various scaling limits, including laws of large numbers, central limit theorems, long-time stability, large deviation principles and moderate deviation principles, together with analyzing the associated accelerated Monte-Carlo schemes of numerical estimation of rare event probabilities. The study of typical asymptotic behaviors will require a combination of tools from the theory of weakly interacting particle systems and random graph/graphon theory. The main challenges of obtaining large and moderate deviation principles arise from system features of infinite dimensional dynamics, vanishing transition rates, and discontinuous statistics. Besides using classic large deviation approaches and weak convergence approaches, the study of atypical asymptotic behaviors will also require the development of new techniques, involving a combination of tools from stochastic analysis and differential equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
排队系统网络在应用概率和运筹学中有着广泛的应用,例如在呼叫中心、工厂、商店、办公室、医院、公共交通服务和云计算系统的设计中。这个项目的目标是了解网络对大型交互排队系统性能的影响,无论是在典型情况下,还是在罕见和意外的情况下,都会产生显著的后果。这项研究将有助于系统管理者设计排队网络和排队策略,从而提高系统的效率和稳定性。该项目还将为相互作用的排队网络问题开发新的数学方法,其结果将有助于研究排队系统以外的领域,如社会科学和流行病学。本研究项目包括本科生、研究生和博士后研究人员,主要研究随机图上大规模负载均衡排队系统的渐近行为,包括加入最短队列、加入空闲队列和d的幂策略。将考虑三类图:经典完全图、具有齐次极限的随机图和异类随机图。研究的目的是通过获得各种尺度极限,包括大数定律、中心极限定理、长期稳定性、大偏差原理和中偏差原理,并分析相关的稀有事件概率数值估计的加速蒙特卡罗格式,来严格理解随机网络对系统性能的关键和具有挑战性的影响,特别是与经典完全图设置的显著偏差。对典型渐近行为的研究将需要弱相互作用粒子系统理论和随机图形/图形理论的工具组合。获得大偏差和中偏差原则的主要挑战来自无限维动力学、零转换率和不连续统计的系统特征。除了使用经典的大偏差方法和弱收敛方法外,研究非典型渐近行为还需要开发新的技术,涉及来自随机分析和微分方程式的工具的组合。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruoyu Wu其他文献

Interleukin-1 beta influences functional regeneration following nerve injury in mice through NF-kappa B signaling pathway
Interleukin-1 beta 通过 NF-kappa B 信号通路影响小鼠神经损伤后的功能再生
  • DOI:
    10.1111/imm.13022
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Ruoyu Wu;Bi Chen;Xiang Jia;Yu Qiu;Mengyu Liu;Chengsheng Huang;Jie Feng;Qingkai Wu
  • 通讯作者:
    Qingkai Wu
Locally interacting diffusions as space-time Markov random fields
作为时空马尔可夫随机场的局部相互作用扩散
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Lacker;K. Ramanan;Ruoyu Wu
  • 通讯作者:
    Ruoyu Wu
Determination of K, na, and Cl contents in corn stover based on near-infrared spectroscopy
基于近红外光谱法测定玉米秸秆中钾、钠和氯的含量
  • DOI:
    10.1016/j.biombioe.2025.107615
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    5.800
  • 作者:
    Ruoyu Wu;Junjie Xue;Hongqian Tian;Qi Zhao;Hongyan Gao;Changqing Dong
  • 通讯作者:
    Changqing Dong
A Method of Time–Intensity Curve Calculation for Vascular Perfusion of Uterine Fibroids Based on Subtraction Imaging with Motion Correction
基于运动校正减影成像的子宫肌瘤血管灌注时间-强度曲线计算方法
  • DOI:
    10.1007/s11220-016-0145-4
  • 发表时间:
    2016-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinjian Zhu;Ruoyu Wu;Tao Li;Dawei Zhao;Xin Shan;Puling Wang;Song Peng;Faqi Li;Baoming Wu
  • 通讯作者:
    Baoming Wu
Friction behaviors of graphene sliding on rough Au substrates and intercalated water layer by molecular dynamics simulations
通过分子动力学模拟研究石墨烯在粗糙金基底及插层水层上滑动的摩擦行为
  • DOI:
    10.1016/j.triboint.2025.110743
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Ruoyu Wu;Feng Liu;Huiming Ning;Rui Zou;Ning Hu;Cheng Yan
  • 通讯作者:
    Cheng Yan

Ruoyu Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
  • 批准号:
    24K06758
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
  • 批准号:
    EP/Y027795/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Research Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
  • 批准号:
    2340289
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
  • 批准号:
    2337375
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Flame quenching and Lean blow-off limits of new zero/low-carbon fuels towards delivering a green Aviation; a combined Modelling & Experimental study
新型零碳/低碳燃料的熄火和精益吹气限制,以实现绿色航空;
  • 批准号:
    EP/Y020839/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Research Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
  • 批准号:
    24K06843
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Learning from Data on Structured Complexes: Products, Bundles, and Limits
职业:从结构化复合体的数据中学习:乘积、捆绑和限制
  • 批准号:
    2340481
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Pushing the limits of electronic delocalization in organic molecules
突破有机分子电子离域的极限
  • 批准号:
    DE240100664
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Discovery Early Career Researcher Award
Pushing the Limits of High-Field Solid-State NMR Technology: Enhancing Applications to Advanced Materials, the Life Sciences and Pharmaceuticals
突破高场固态核磁共振技术的极限:增强先进材料、生命科学和制药的应用
  • 批准号:
    EP/Z532836/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Research Grant
Asymptotic patterns and singular limits in nonlinear evolution problems
非线性演化问题中的渐近模式和奇异极限
  • 批准号:
    EP/Z000394/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了