Microwave Atom Chip Traps for Atom Interferometry
用于原子干涉测量的微波原子芯片陷阱
基本信息
- 批准号:2308767
- 负责人:
- 金额:$ 76.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This interdisciplinary project will design, construct, and characterize atom interferometers based on ultracold trapped atoms on a microwave atom chip. Atom interferometers are the most sensitive force measuring devices ever constructed. Notably, they are particularly well suited for precision measurements and detection of electric and magnetic fields, gravity, and inertial forces, such as accelerations and rotations. Applications of atom interferometers include inertial navigation in a GPS-denied environment, remote sensing of underground and underwater structures, measuring atom-surface forces, and searching for deviations of the gravitational force from the inverse square law. While most atom interferometers operate with freely propagating atoms, one of the main scientific goals of this project is to develop and evaluate atom interferometers based on atoms trapped on an atom chip device, ideal for building a compact, fieldable sensor. Furthermore, the project will control these atoms using AC Zeeman potentials (based on rapidly oscillating magnetic fields) a novel and little explored quantum control mechanism for applying forces on atoms using microwave fields generated in the vicinity of an atom chip. Graduate and undergraduate student researchers will be trained in atom interferometry, ultracold atom technologies, microwave engineering, and micro-fabrication techniques, as well as in the broadly enabling sciences of atomic and optical physics. This interdisciplinary project is a collaborative effort between ultracold quantum physicists at William & Mary and microfabrication engineers at Virginia Commonwealth University. More specifically, this project will construct ultracold trapped atom interferometers that are based on microwave AC Zeeman traps and potentials generated by a microwave atom chip. The research uses an interdisciplinary approach that combines materials science advances, microfabrication, and microwave engineering to fundamentally enhance spin-specific quantum control of ultracold atoms for trapping and interferometry. A major objective of this project is the microfabrication of a microwave atom chip: The chip uses a novel thin substrate of aluminum nitride, which has a large dielectric constant and high thermal conductivity, for generating strong microwave near fields. Furthermore, AC Zeeman potentials offer a transformational mechanism for spin-specific manipulation of ultracold atoms, and a major thrust of the project is to implement and study atom chip-based microwave AC Zeeman traps and evaluate their suitability for spin-dependent atom interferometry. Notably, the project will study the stability of trapped atomic spin states, the smoothness of the trapping potential, the application of additional microwave and radio-frequency dressing fields for sculpting complex potentials, and the viability of more compact chip structures. Finally, the project will investigate the use of microwave lattices for enhanced trapping and interferometry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个跨学科项目将设计、构建和表征基于微波原子芯片上超冷捕获原子的原子干涉仪。原子干涉仪是有史以来最灵敏的力测量设备。值得注意的是,它们特别适合于精确测量和检测电场和磁场,重力和惯性力,如加速度和旋转。原子干涉仪的应用包括在GPS拒绝环境中的惯性导航,地下和水下结构的遥感,测量原子表面力,以及寻找重力与平方反比定律的偏差。虽然大多数原子干涉仪与自由传播的原子一起工作,但该项目的主要科学目标之一是开发和评估基于原子芯片设备上捕获的原子的原子干涉仪,这是构建紧凑,可现场使用的传感器的理想选择。此外,该项目将使用AC塞曼势(基于快速振荡的磁场)控制这些原子,这是一种新颖且很少探索的量子控制机制,用于使用原子芯片附近产生的微波场对原子施加力。研究生和本科生研究人员将接受原子干涉测量,超冷原子技术,微波工程和微制造技术以及原子和光学物理学的广泛支持科学的培训。这个跨学科的项目是威廉玛丽的超冷量子物理学家和弗吉尼亚联邦大学的微制造工程师之间的合作努力。更具体地说,本项目将构建基于微波交流塞曼陷阱和微波原子芯片产生的电势的超冷捕获原子干涉仪。该研究采用跨学科的方法,结合材料科学的进步,微制造和微波工程,从根本上增强超冷原子的自旋特定量子控制,用于捕获和干涉测量。该项目的一个主要目标是微波原子芯片的微制造:该芯片使用一种新型的氮化铝薄衬底,该衬底具有大的介电常数和高的热导率,用于产生强微波近场。此外,交流塞曼势提供了一个转换机制的自旋特定的操纵超冷原子,和该项目的一个主要目标是实现和研究基于原子芯片的微波交流塞曼陷阱,并评估其适用于自旋相关的原子干涉。值得注意的是,该项目将研究捕获原子自旋状态的稳定性,捕获势的平滑性,用于雕刻复杂势的额外微波和射频修整场的应用,以及更紧凑芯片结构的可行性。最后,该项目将调查使用微波晶格增强陷获和干涉测量。该奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的知识价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seth Aubin其他文献
Atomic parity non-conservation: the francium anapole project of the FrPNC collaboration at TRIUMF
原子宇称不守恒:TRIUMF FrPNC 合作的钫 anapole 项目
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Seth Aubin;John Behr;R. Collister;V. Flambaum;E. Gomez;G. Gwinner;K. P. Jackson;D. Melconian;L. Orozco;M. Pearson;Dong Sheng;G. Sprouse;M. Tandecki;M. Tandecki;J. Zhang;Yanting Zhao - 通讯作者:
Yanting Zhao
Commissioning of the Francium Trapping Facility at TRIUMF
TRIUMF 钫捕集设施调试
- DOI:
10.1088/1748-0221/8/12/p12006 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
M. Tandecki;J. Zhang;R. Collister;Seth Aubin;John Behr;E. Gomez;G. Gwinner;L. Orozco;M. R. Pearson - 通讯作者:
M. R. Pearson
Atom chip apparatus for experiments with ultracold rubidium and potassium gases.
用于超冷铷和钾气体实验的原子芯片装置。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:1.6
- 作者:
M. Ivory;A. Ziltz;C. Fancher;A. Pyle;Anuraag Sensharma;B. Chase;J. P. Field;A. Garcia;D. Jervis;Seth Aubin - 通讯作者:
Seth Aubin
Potential roughness suppression in a RF AC Zeeman atom chip trap
RF AC 塞曼原子芯片陷阱中潜在的粗糙度抑制
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
W. Miyahira;Seth Aubin - 通讯作者:
Seth Aubin
Hyperfine Anomalies in Fr: Boundaries of the Spherical Single Particle Model.
Fr 中的超精细异常:球形单粒子模型的边界。
- DOI:
10.1103/physrevlett.115.042501 - 发表时间:
2015 - 期刊:
- 影响因子:8.6
- 作者:
J. Zhang;M. Tandecki;R. Collister;Seth Aubin;John Behr;E. Gomez;G. Gwinner;L. Orozco;M. Pearson;G. Sprouse - 通讯作者:
G. Sprouse
Seth Aubin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seth Aubin', 18)}}的其他基金
Microwave Traps and Atom Interferometry with AC Zeeman Potentials
微波陷阱和原子干涉测量与交流塞曼势
- 批准号:
1806558 - 财政年份:2018
- 资助金额:
$ 76.87万 - 项目类别:
Continuing Grant
相似国自然基金
1keV/atom以下的团簇离子注入固体极浅表面的过程研究
- 批准号:11075076
- 批准年份:2010
- 资助金额:42.0 万元
- 项目类别:面上项目
相似海外基金
Silicon Photonic Integrated Circuits for Chip-Scale Thermal and Cold Atom Sensors
用于芯片级热原子和冷原子传感器的硅光子集成电路
- 批准号:
2887681 - 财政年份:2023
- 资助金额:
$ 76.87万 - 项目类别:
Studentship
NSF Convergence Accelerator-Track C: Chip-Scale Integrated Multibeam Steering System for Cold-Atom Quantum Computing
NSF 融合加速器-Track C:用于冷原子量子计算的芯片级集成多波束转向系统
- 批准号:
2040527 - 财政年份:2020
- 资助金额:
$ 76.87万 - 项目类别:
Standard Grant
Realizing friction measurements for sing-atom contact using on-chip AFM
使用片上 AFM 实现单原子接触的摩擦测量
- 批准号:
25630034 - 财政年份:2013
- 资助金额:
$ 76.87万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Dual isotope laser cooling and BEC on an Atom chip
Atom 芯片上的双同位素激光冷却和 BEC
- 批准号:
343350-2008 - 财政年份:2012
- 资助金额:
$ 76.87万 - 项目类别:
Discovery Grants Program - Individual
Dual isotope laser cooling and BEC on an Atom chip
Atom 芯片上的双同位素激光冷却和 BEC
- 批准号:
343350-2008 - 财政年份:2011
- 资助金额:
$ 76.87万 - 项目类别:
Discovery Grants Program - Individual
Dual isotope laser cooling and BEC on an Atom chip
Atom 芯片上的双同位素激光冷却和 BEC
- 批准号:
343350-2008 - 财政年份:2010
- 资助金额:
$ 76.87万 - 项目类别:
Discovery Grants Program - Individual
Dual isotope laser cooling and BEC on an Atom chip
Atom 芯片上的双同位素激光冷却和 BEC
- 批准号:
343350-2008 - 财政年份:2009
- 资助金额:
$ 76.87万 - 项目类别:
Discovery Grants Program - Individual
Dual isotope laser cooling and BEC on an Atom chip
Atom 芯片上的双同位素激光冷却和 BEC
- 批准号:
343350-2008 - 财政年份:2008
- 资助金额:
$ 76.87万 - 项目类别:
Discovery Grants Program - Individual
Atom chip facility for the study of rydberg atom metal surface interactions
用于研究里德伯原子金属表面相互作用的原子芯片设施
- 批准号:
315418-2005 - 财政年份:2004
- 资助金额:
$ 76.87万 - 项目类别:
Research Tools and Instruments - Category 1 (<$150,000)
Quantum Information Processing with Neutral Atoms on an Atom Chip
原子芯片上的中性原子量子信息处理
- 批准号:
5320766 - 财政年份:2001
- 资助金额:
$ 76.87万 - 项目类别:
Priority Programmes