Efficient Reconstruction and Rendering of Dynamic, Wide-Range Lightfields

动态、宽范围光场的高效重建和渲染

基本信息

项目摘要

Image based rendering (IBR) is an important research theme in both computer vision and graphics. A scene is rendered from a set of previously captures images as samples of the scene light field. Depending on the approach, not only color images but also depth images may guide the novel view rendering. Previously, IBR research has focused mainly on static scenes or used expensive 2D camera fields for capture, or have applied constraints regarding the observed scenes, like models of human characters, which require expensive global optimization.The requested research investigates the large-scale acquisition, the dynamic representation, and the efficient rendering of time-varying light fields of scenes with consideration of dynamic scene geometry, reflectance and illumination conditions. Since real scenes exhibit a large degree of coherence in space and time, we will investigate to capture not the complete dense light field, but to acquire sparse space-time sections of the light field. The space-time light field is captured by a horizontal multi-camera rig, consisting of 25 cameras with total width of 2.5m, acquiring 30 fps per camera. The rig is motor- controlled and shiftable over a 2D range of 2.5m vertical and horizontal, hence capable of capturing 1D-slices of the light field over time. Simultaneously, a scene point is viewed by 25 angular samples which allows to estimate reflectance and illumination properties. In addition, several depth cameras (Kinect/ToF) capture scene depth.The central assumption of this proposal is that sparse sampling of the light field in combination with depth-compensated multi-view interpolation allows for high-quality reconstruction of the dense light field. This reconstruction enables a series of important visual applications, like content-generation for free-viewpoint television and auto-stereoscopic parallax displays.To reach the research goals, we have centered the proposal around two central approaches. Firstly we will investigate local cost functions for efficient and robust optimisation to accumulate the dense dynamic light field from a sparse data acquisition, by evaluating scene geometry and motion under consideration of reflectivity and illumination. Secondly, we will employ a suitable hybrid representation of geometry and imagery for reconstructing and storing the dynamic dense light field. All approaches are tuned towards high computational efficiency in order to capture, store, and render novel views in minimal time.
基于图像的绘制(IBR)是计算机视觉和图形学领域的一个重要研究课题。一个场景是从一组先前捕获的图像中渲染出来的,作为场景光场的样本。根据不同的方法,不仅可以使用彩色图像,还可以使用深度图像来指导新的视图渲染。以前,IBR研究主要集中在静态场景或使用昂贵的2D相机场进行捕获,或者对观察到的场景施加约束,如人类角色模型,这需要昂贵的全局优化。在考虑动态场景几何、反射率和光照条件的情况下,研究了场景时变光场的大规模采集、动态表示和高效渲染。由于真实场景在空间和时间上表现出很大程度的相干性,我们将研究捕获光场的稀疏时空部分,而不是完整的密集光场。时空光场由25台总宽度为2.5m的卧式多摄像机组成,每台摄像机捕获30 fps。该钻机由电机控制,可在2.5米的二维垂直和水平范围内移动,因此能够捕获随时间变化的光场的一维切片。同时,一个场景点是由25个角度的样本,允许估计反射率和照明属性。此外,几个深度相机(Kinect/ToF)捕捉场景深度。该建议的中心假设是光场的稀疏采样与深度补偿的多视图插值相结合,可以高质量地重建密集光场。这种重建实现了一系列重要的视觉应用,如自由视点电视的内容生成和自动立体视差显示。为了达到研究目标,我们围绕两个中心方法提出了建议。首先,我们将研究局部成本函数,通过在考虑反射率和光照的情况下评估场景几何和运动,从稀疏数据采集中积累密集的动态光场,从而实现高效和鲁棒的优化。其次,我们将采用合适的几何和图像混合表示来重建和存储动态密光场。为了在最短的时间内捕获、存储和呈现新颖的视图,所有的方法都朝着高计算效率的方向调整。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Novel Self-Calibration Method for a Stereo-ToF System Using a Kinect V2 and Two 4K GoPro Cameras
使用 Kinect V2 和两个 4K GoPro 相机的立体 ToF 系统的新颖自校准方法
SIMULATION OF PLENOPTIC CAMERAS
Creating Realistic Ground Truth Data for the Evaluation of Calibration Methods for Plenoptic and Conventional Cameras
Parallax View Generation for Static Scenes Using Parallax-Interpolation Adaptive Separable Convolution
IEST: Interpolation-Enhanced Shearlet Transform for Light Field Reconstruction Using Adaptive Separable Convolution
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Reinhard Koch其他文献

Professor Dr.-Ing. Reinhard Koch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Reinhard Koch', 18)}}的其他基金

Reconstruction of Complex Deformations in 3D Scenes from Color and Depth Images
从彩色和深度图像重建 3D 场景中的复杂变形
  • 批准号:
    257332386
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
3D-Modelling of seafloor structures from ROV-based video sequences
根据基于 ROV 的视频序列对海底结构进行 3D 建模
  • 批准号:
    68506282
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Dynamisches 3D-Sehen 3D-Poseschätzung und 3D-Mapping mittels PMD-Kamera (3DPoseMap)
使用 PMD 相机进行动态 3D 视觉 3D 位姿估计和 3D 映射 (3DoseMap)
  • 批准号:
    22914045
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

Fast Reconstruction and Real-time Rendering of Immersive Light Field Video
沉浸式光场视频的快速重建与实时渲染
  • 批准号:
    DP240103334
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
CAREER: Sparse Sampling and Reconstruction for Rendering Through Per-Scene Optimization
职业:通过每场景优化进行渲染的稀疏采样和重建
  • 批准号:
    2238193
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RI: Small: 3D Reconstruction via Differential Rendering and Deep Learning
RI:小型:通过差分渲染和深度学习进行 3D 重建
  • 批准号:
    1813583
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CHS: Small: Collaborative Research: Sampling and Reconstruction for Computer Graphics Rendering and Imaging
CHS:小型:协作研究:计算机图形渲染和成像的采样和重建
  • 批准号:
    1420122
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CHS: Small: Collaborative Research: Sampling and Reconstruction for Computer Graphics Rendering and Imaging
CHS:小型:协作研究:计算机图形渲染和成像的采样和重建
  • 批准号:
    1420146
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CHS: Small: Collaborative Research: Sampling and Reconstruction for Computer Graphics Rendering and Imaging
CHS:小型:协作研究:计算机图形渲染和成像的采样和重建
  • 批准号:
    1451830
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CGV: Small: Collaborative Research: Sparse Reconstruction and Frequency Analysis for Computer Graphics Rendering and Imaging
CGV:小型:协作研究:计算机图形渲染和成像的稀疏重建和频率分析
  • 批准号:
    1115242
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CGV: Small: Collaborative Research: Sparse Reconstruction and Frequency Analysis for Computer Graphics Rendering and Imaging
CGV:小型:协作研究:计算机图形渲染和成像的稀疏重建和频率分析
  • 批准号:
    1116303
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Beyond Perspective Cameras: Multi-perspective Imaging, Reconstruction, Rendering, and Projection
职业:超越视角相机:多视角成像、重建、渲染和投影
  • 批准号:
    0845268
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Dynamic real-time reconstruction and rendering of breast tomosynthesis images
乳腺断层合成图像的动态实时重建与渲染
  • 批准号:
    7538227
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了