Joint Correspondence Computation and Statistical Analysis of Geometric Models of Human Faces and Bodies
人脸与人体几何模型的联合对应计算与统计分析
基本信息
- 批准号:255664445
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal addresses the problem of processing 3-dimensional geometric human face and body models, which can be acquired using a variety of techniques from laser-range scanners to structured light scanners and image-based systems. Two key problems when processing geometric data are the correspondence computation, which identifies intrinsically corresponding parts between two or more geometric models, and the statistical analysis of a population of geometric models, which computes a probability distribution of the geometric models. These two problems are interdependent. One the one hand, the statistical analysis of a population of models requires correspondence information. On the other hand, the probability distribution computed using shape analysis can be used to compute correspondence information robustly and efficiently.In this project, we aim to use this interdependence to solve the two problems jointly. Our goal is to focus on multilinear probability distributions, which can be used to analyze different modes of variation caused by different geometric variations. For instance, this model can be used to statistically analyze shapes of human faces of different subjects with different facial expressions or shapes of human bodies of different subjects in different poses. We expect to find correspondences of significantly higher quality than existing methods by solving the two problems jointly.We plan to address this problem in two steps. First, we focus on fundamental problems, such as the analysis of different tensor decompositions that can be used to compute a multilinear model and the use of such tensor decompositions in a framework that optimizes correspondences. Second, we focus on applying the developed methods to raw data scans. The main challenge of this step is the development of algorithms that are robust with respect to noise and missing data.The knowledge gained using the developed methods can be used in various applications, such as the reconstruction of 3D human face and body models or the recognition of geometric objects. Problems of this type are encountered in areas besides computer vision and computer graphics, for instance in medical and biological applications.
该提案解决了处理三维几何人脸和身体模型的问题,这些模型可以使用各种技术获得,从激光测距扫描仪到结构光扫描仪和基于图像的系统。几何数据处理中的两个关键问题是对应计算,即识别两个或多个几何模型之间的内在对应部分,以及几何模型总体的统计分析,即计算几何模型的概率分布。这两个问题是相互依存的。一方面,一组模型的统计分析需要对应的信息。另一方面,利用形状分析计算的概率分布可以鲁棒高效地计算对应信息。在这个项目中,我们的目标是利用这种相互依赖来共同解决这两个问题。我们的目标是关注多线性概率分布,它可以用来分析不同几何变化引起的不同模式的变化。例如,该模型可以用于统计分析不同主体不同面部表情的人脸形状,或者不同主体不同姿势下的人体形状。我们希望通过联合解决这两个问题,找到比现有方法质量更高的对应关系。我们计划分两步解决这个问题。首先,我们关注基本问题,例如分析可用于计算多线性模型的不同张量分解,以及在优化对应的框架中使用这种张量分解。其次,我们着重于将开发的方法应用于原始数据扫描。这一步的主要挑战是开发对噪声和缺失数据具有鲁棒性的算法。利用所开发的方法获得的知识可用于各种应用,例如三维人脸和身体模型的重建或几何物体的识别。除了计算机视觉和计算机图形学之外,在医学和生物应用领域也会遇到这类问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Joachim Weickert, since 2/2015其他文献
Professor Dr. Joachim Weickert, since 2/2015的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Local Geometric Langlands Correspondence and Representation Theory
局部几何朗兰兹对应与表示理论
- 批准号:
2416129 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Bulk-edge correspondence and symmetry of strongly correlated topological pump
强相关拓扑泵的体边对应和对称性
- 批准号:
23H01091 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Transcendental fiber functors, shift of argument algebras and Riemann-Hilbert correspondence for q-difference equations
q 差分方程的超越纤维函子、变元代数平移和黎曼-希尔伯特对应
- 批准号:
2302568 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Multitask Image-Natural Language Correspondence Model Development using Large-Scale Medical Image Dataset
使用大规模医学图像数据集开发多任务图像-自然语言对应模型
- 批准号:
23K17229 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
problem of integrability in the context of the AdS/CFT correspondence
AdS/CFT 对应关系中的可积性问题
- 批准号:
2816508 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
From Quiver Yangians to Gauge/Bethe Correspondence
从 Quiver Yangians 到 Gauge/Bethe 对应
- 批准号:
23KF0105 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Ensemble averages in string theory and the AdS/BCFT correspondence
弦理论中的系综平均值和 AdS/BCFT 对应关系
- 批准号:
23KJ1337 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Gauge/gravity correspondence and quantum gravity for expanding universe
膨胀宇宙的规范/重力对应关系和量子引力
- 批准号:
23H01170 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Tactile alphabets and cultures of correspondence within the British blind community: writing letters before the standardisation of Braille, 1840-1905
英国盲人社区内的触觉字母和通信文化:盲文标准化之前的字母书写,1840-1905 年
- 批准号:
2891064 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship