Transcendental fiber functors, shift of argument algebras and Riemann-Hilbert correspondence for q-difference equations
q 差分方程的超越纤维函子、变元代数平移和黎曼-希尔伯特对应
基本信息
- 批准号:2302568
- 负责人:
- 金额:$ 28.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Quantum groups are deformations of the most basic symmetries of Nature. They were discovered during the 1980s in the study of one- and two-dimensional statistical mechanical models describing thin layers of ice. Amazingly, quantum groups have recently been shown to arise as the symmetries of 4-dimensional gauge theories, which describe the interaction of elementary particles such as quarks. Differential equations are another basic paradigm in science, and describe the evolution of physical, chemical, biological and economic systems. One of their striking aspects is that they can exhibit Stokes phenomena: their solutions are not entirely captured by the recursive, and often programmable methods used to solve them. The missing information, or Stokes data, can be considered as a hidden symmetry of the differential equation, as they relate different solutions possessing the same formal expansions. This project stems from the recent discovery that quantum groups naturally arise from the Stokes data of differential equations associated to classical symmetries. The main goals are to further explore this bridge between classical and quantum symmetries. Of particular interest is the extension to difference equations, which are natural discretisations of differential equations, and whose Stokes data are not well-understood beyond the one-variable case. Another important direction will the study of the integrable systems, or constants of motion, corresponding to these differential and difference equations. The project will provide research training opportunities for graduate students.In more detail, the project stems from transcendental construction of quantum groups from the Stokes data of the dynamical Knizhnik-Zamolodchikov equations for the corresponding Lie algebra due to the PI. The first component will extending the construction to numerical values of the deformation parameter, in particular to roots of unity, and to the difference setting. The second component will establish a Riemann-Hilbert correspondence for q-difference equations in several variables by defining an appropriate notion of regular singularities and capturing these by elliptic monodromy data, similar to the one-variable case treated by Birkhoff. The third component is concerned with the integrable systems arising from the Casimir connection, and their parametrisation in terms of sheets of the corresponding Lie algebra. The results of the project will have application in the study of Stokes phenomena, quantum integrable systems and geometric representation theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子群是自然界最基本对称性的变形。它们是在20世纪80年代在研究描述薄冰层的一维和二维统计力学模型时发现的。令人惊讶的是,量子群最近被证明是作为四维规范理论的对称性出现的,四维规范理论描述了夸克等基本粒子的相互作用。微分方程是科学中的另一个基本范式,描述了物理、化学、生物和经济系统的演化。它们的一个引人注目的方面是,它们可以表现出斯托克斯现象:它们的解决方案并不完全被递归捕获,并且通常用于解决它们的可编程方法。缺失的信息或斯托克斯数据可以被认为是微分方程的隐藏对称性,因为它们涉及具有相同形式展开的不同解。这个项目源于最近的发现,量子群自然产生于与经典对称性相关的微分方程的斯托克斯数据。主要目标是进一步探索经典和量子对称性之间的桥梁。特别感兴趣的是差分方程的扩展,差分方程是微分方程的自然离散化,其斯托克斯数据除了一个变量的情况外还没有得到很好的理解。另一个重要的方向将研究可积系统,或运动常数,对应于这些微分和差分方程。该项目将为研究生提供研究培训的机会。更详细地说,该项目源于量子群的超越构造,这些量子群来自于由于PI而产生的相应李代数的动力学Knizhnik-Zamolodchikov方程的Stokes数据。第一部分将构造扩展到变形参数的数值,特别是单位根和差分设置。第二部分将建立一个黎曼-希尔伯特对应的q-差分方程在几个变量,通过定义一个适当的概念,经常奇性和捕捉这些椭圆monodromy数据,类似于一个变量的情况下处理伯克霍夫。第三部分是关于由Casimir联络产生的可积系统,以及它们在相应的李代数片中的参数化。该项目的成果将在斯托克斯现象、量子可积系统和几何表示理论的研究中得到应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valerio Toledano Laredo其他文献
Valerio Toledano Laredo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valerio Toledano Laredo', 18)}}的其他基金
Exponential Periods, Bispectrality and Affine Quantum Groups
指数周期、双谱性和仿射量子群
- 批准号:
1802412 - 财政年份:2018
- 资助金额:
$ 28.49万 - 项目类别:
Standard Grant
RTG: Algebraic Geometry and Representation Theory
RTG:代数几何和表示论
- 批准号:
1645877 - 财政年份:2017
- 资助金额:
$ 28.49万 - 项目类别:
Continuing Grant
Monodromy Theorems, Affine Quantum Groups, and Meromorphic Tensor Categories
单向定理、仿射量子群和亚纯张量范畴
- 批准号:
1505305 - 财政年份:2015
- 资助金额:
$ 28.49万 - 项目类别:
Standard Grant
Casimir connections, Yangians and quantum loop algebras
卡西米尔连接、Yangians 和量子环代数
- 批准号:
1206305 - 财政年份:2012
- 资助金额:
$ 28.49万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Quantum Cohomology, Quantized Algebraic Varieties, and Representation Theory
FRG:合作研究:量子上同调、量化代数簇和表示论
- 批准号:
0854792 - 财政年份:2009
- 资助金额:
$ 28.49万 - 项目类别:
Continuing Grant
Flat Connections, Irregular Singularities and Quantum Groups
平面连接、不规则奇点和量子群
- 批准号:
0707212 - 财政年份:2007
- 资助金额:
$ 28.49万 - 项目类别:
Continuing Grant
相似国自然基金
Irisin通过整合素调控黄河鲤肌纤维发育的分子机制研究
- 批准号:32303019
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
核转运蛋白KPNA3/4与Fiber-2互作调控血清4型禽腺病毒致病机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
草鱼呼肠孤病毒(GD108株)fiber蛋白介导的病毒吸附机制研究
- 批准号:31902420
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
肌球蛋白18B通过影响微丝应力纤维组装调控肿瘤细胞迁移的机制研究
- 批准号:31970660
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
高性能纤维混凝土构件抗爆的强度预测
- 批准号:51708391
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
三维流形的Generalized Seifert Fiber分解
- 批准号:11526046
- 批准年份:2015
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
外壳蛋白penton和Fiber在腺病毒31型嗜肠道感染中的作用及机制研究
- 批准号:81401705
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
面向UWB-over-fiber的光生可调谐超宽带信号研究
- 批准号:61108027
- 批准年份:2011
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
隧道超前探测的三分量光纤地震加速度检波机理与应用研究
- 批准号:51079080
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
基于QAM光载毫米波信号的10Gb/s RoF系统关键技术研究
- 批准号:61001061
- 批准年份:2010
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The role of nigrostriatal and striatal cell subtype signaling in behavioral impairments related to schizophrenia
黑质纹状体和纹状体细胞亚型信号传导在精神分裂症相关行为障碍中的作用
- 批准号:
10751224 - 财政年份:2024
- 资助金额:
$ 28.49万 - 项目类别:
CAREER: Additive Manufacturing of Structural Battery Carbon Fiber Reinforced Composites
职业:结构电池碳纤维增强复合材料的增材制造
- 批准号:
2340090 - 财政年份:2024
- 资助金额:
$ 28.49万 - 项目类别:
Standard Grant
I-Corps: Imaging and locating geothermal resources using distributed acoustic sensing deployed on telecommunication fiber cables
I-Corps:使用部署在电信光缆上的分布式声学传感对地热资源进行成像和定位
- 批准号:
2344558 - 财政年份:2024
- 资助金额:
$ 28.49万 - 项目类别:
Standard Grant
Developmental mechanisms specifying vagal innervation of organ targets
指定器官目标迷走神经支配的发育机制
- 批准号:
10752553 - 财政年份:2024
- 资助金额:
$ 28.49万 - 项目类别:
Collaborative Research: GreenFjord-FIBER, Observing the Ice-Ocean Interface with Exceptional Resolution
合作研究:GreenFjord-FIBER,以卓越的分辨率观测冰海界面
- 批准号:
2338503 - 财政年份:2024
- 资助金额:
$ 28.49万 - 项目类别:
Standard Grant
3D integrated crystalline UV optical lens-fiber couplers for astronomy
用于天文学的 3D 集成晶体紫外光学透镜光纤耦合器
- 批准号:
DP240103231 - 财政年份:2024
- 资助金额:
$ 28.49万 - 项目类别:
Discovery Projects
Collaborative Research: GreenFjord-FIBER, Observing the Ice-Ocean Interface with Exceptional Resolution
合作研究:GreenFjord-FIBER,以卓越的分辨率观测冰海界面
- 批准号:
2338502 - 财政年份:2024
- 资助金额:
$ 28.49万 - 项目类别:
Standard Grant
PFI-TT: Metasurface-Optical Fiber Endoscopy Probe for Advanced Imaging
PFI-TT:用于高级成像的超表面光纤内窥镜探头
- 批准号:
2345825 - 财政年份:2024
- 资助金额:
$ 28.49万 - 项目类别:
Standard Grant
CAREER: Understanding Fiber Bundle Failure Mechanics for Ultra-high Reliability Applications
职业:了解超高可靠性应用的光纤束失效机制
- 批准号:
2339223 - 财政年份:2024
- 资助金额:
$ 28.49万 - 项目类别:
Standard Grant