Innovation of Numerical Methods for High-Dimensional Partial Differential Equations
高维偏微分方程数值方法的创新
基本信息
- 批准号:2309378
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
High dimensional partial differential equations (PDEs) arise ubiquitously from scientific and engineering problems with many degrees of freedom. Important examples include, but are not limited to, many-body quantum mechanics, dynamics of chemical systems, learning and control of complex systems, and spectral methods for high dimensional data. The numerical solution of high dimensional PDEs, such as the many-body Schrodinger equations, has been one of the greatest scientific challenges and remains a formidable task even with today's computational power and algorithmic advances. This project involves cross-fertilization of mathematical analysis and numerical algorithm development to address challenges in solving these nonlinear, high dimensional equations. The research results will advance our mathematical understanding and improve numerical algorithms for quantum many-body problems and other high dimensional PDE problems. The project involves new curriculum development and training of graduate students in applied mathematics and computational science.The research project aims to innovate numerical strategies for high dimensional PDEs by drawing from and further developing ideas and tools from recent advances in computational physics, quantum chemistry, and machine learning. In particular, modern techniques for nonlinear parametrization of high dimensional functions and sampling for high dimensional distributions. Specifically, the investigator will (1) design and analyze neural-network parametrization for high-dimensional functions with symmetry constraints, and (2) develop and analyze efficient adaptive sampling strategies for training neural-network solutions to high-dimensional PDEs. The research combines mathematical analysis and algorithm design to make progress in numerical methods for high dimensional PDEs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高维偏微分方程(PDE)普遍存在于具有多个自由度的科学和工程问题中。重要的例子包括,但不限于,多体量子力学,化学系统的动力学,复杂系统的学习和控制,以及高维数据的光谱方法。 高维偏微分方程的数值解,如多体薛定谔方程,一直是最大的科学挑战之一,仍然是一个艰巨的任务,即使今天的计算能力和算法的进步。该项目涉及数学分析和数值算法开发的交叉施肥,以解决这些非线性,高维方程的挑战。研究结果将促进我们对量子多体问题和其他高维偏微分方程问题的数学理解和改进数值算法。 该项目涉及应用数学和计算科学的新课程开发和研究生培训。该研究项目旨在通过借鉴并进一步发展计算物理,量子化学和机器学习的最新进展,创新高维偏微分方程的数值策略。特别是,现代技术的非线性参数化的高维函数和采样的高维分布。具体而言,研究者将(1)设计和分析具有对称约束的高维函数的神经网络参数化,以及(2)开发和分析用于训练高维偏微分方程神经网络解决方案的有效自适应采样策略。该研究结合了数学分析和算法设计,在高维偏微分方程的数值方法方面取得了进展。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianfeng Lu其他文献
Filling dynamics and phase change of molten salt in cold receiver pipe during initial pumping process
初始泵送过程中冷接收管内熔盐的充填动力学和相变
- DOI:
10.1016/j.ijheatmasstransfer.2013.04.021 - 发表时间:
2013-09 - 期刊:
- 影响因子:5.2
- 作者:
Jianfeng Lu;Jing Ding;Jianping Yang - 通讯作者:
Jianping Yang
span style=background-color:#ffffff;color:#000000;Lead Methylammonium Triiodide Perovskite-Based Solar Cells: An Interfacial Charge-Transfer Investigation/span
三碘化甲基铵钙钛矿太阳能电池:界面电荷转移研究
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:8.4
- 作者:
Xiaobao Xu;Hua Zhang;Kun Cao;Jin Cui;Jianfeng Lu;Xianwei Zeng;Yan Shen;Mingkui Wang - 通讯作者:
Mingkui Wang
Toward Quality-Aware Reverse Auction-based Incentive Mechanism for Federated Learning
面向联邦学习的基于质量意识的反向拍卖激励机制
- DOI:
10.1109/msn60784.2023.00035 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jialing Ni;Pan Qi;Jianfeng Lu - 通讯作者:
Jianfeng Lu
DETECTION OF CRONOBACTER IN INFANT FORMULA AND PHYLOGENETIC ANALYSIS ON α-GLUCOSIDASE GENES
婴儿配方奶粉中克罗诺杆菌的检测及α-葡萄糖苷酶基因的系统发育分析
- DOI:
10.1111/j.1745-4565.2010.00283.x - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Y. Ye;Qingping Wu;Jumei Zhang;Jianfeng Lu;Lin Lin - 通讯作者:
Lin Lin
Multiplicity and stability of boiling on a thin cylinder with heat generation
薄壁圆筒上沸腾的多重性和稳定性
- DOI:
10.1016/j.ijheatmasstransfer.2014.02.001 - 发表时间:
2014-06 - 期刊:
- 影响因子:5.2
- 作者:
Jianfeng Lu;Xiaofeng Peng;Duujong Lee;Jing Ding - 通讯作者:
Jing Ding
Jianfeng Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianfeng Lu', 18)}}的其他基金
EAGER: QAC-QSA: Resource Reduction in Quantum Computational Chemistry Mapping by Optimizing Orbital Basis Sets
EAGER:QAC-QSA:通过优化轨道基集减少量子计算化学绘图中的资源
- 批准号:
2037263 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Innovative Numerical Methods for High-Dimensional Applications
高维应用的创新数值方法
- 批准号:
2012286 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Research and training in advanced computational methods for quantum and statistical mechanics
职业:量子和统计力学高级计算方法的研究和培训
- 批准号:
1454939 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Mathematical Problems for Electronic Structure Models
电子结构模型的数学问题
- 批准号:
1312659 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似海外基金
Conference: Mathematical models and numerical methods for multiphysics problems
会议:多物理问题的数学模型和数值方法
- 批准号:
2347546 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Nonlinear logarithmic difference operators and their application to structure-preserving numerical methods
非线性对数差分算子及其在保结构数值方法中的应用
- 批准号:
23K17655 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Topological-based numerical methods for real-world problems
针对现实世界问题的基于拓扑的数值方法
- 批准号:
2882199 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Studentship
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
- 批准号:
2325195 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
- 批准号:
23K03232 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of numerical methods for solving unsteady shock waves stably and correctly and its application to shock wave interaction phenomena
稳定正确求解非定常冲击波数值方法的发展及其在冲击波相互作用现象中的应用
- 批准号:
23KJ0981 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Numerical Analysis for Meshfree and Particle Methods via Nonlocal Models
职业:通过非局部模型进行无网格和粒子方法的数值分析
- 批准号:
2240180 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
- 批准号:
2309687 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
- 批准号:
2324369 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant